Evaluate
-\frac{1}{2}+\frac{3}{2}i=-0.5+1.5i
Real Part
-\frac{1}{2} = -0.5
Share
Copied to clipboard
\frac{\left(-3+4i\right)i^{47}}{3-2i-\left(2+i\right)}
Calculate 1+2i to the power of 2 and get -3+4i.
\frac{\left(-3+4i\right)\left(-i\right)}{3-2i-\left(2+i\right)}
Calculate i to the power of 47 and get -i.
\frac{4+3i}{3-2i-\left(2+i\right)}
Multiply -3+4i and -i to get 4+3i.
\frac{4+3i}{1-3i}
Subtract 2+i from 3-2i to get 1-3i.
\frac{\left(4+3i\right)\left(1+3i\right)}{\left(1-3i\right)\left(1+3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1+3i.
\frac{-5+15i}{10}
Do the multiplications in \frac{\left(4+3i\right)\left(1+3i\right)}{\left(1-3i\right)\left(1+3i\right)}.
-\frac{1}{2}+\frac{3}{2}i
Divide -5+15i by 10 to get -\frac{1}{2}+\frac{3}{2}i.
Re(\frac{\left(-3+4i\right)i^{47}}{3-2i-\left(2+i\right)})
Calculate 1+2i to the power of 2 and get -3+4i.
Re(\frac{\left(-3+4i\right)\left(-i\right)}{3-2i-\left(2+i\right)})
Calculate i to the power of 47 and get -i.
Re(\frac{4+3i}{3-2i-\left(2+i\right)})
Multiply -3+4i and -i to get 4+3i.
Re(\frac{4+3i}{1-3i})
Subtract 2+i from 3-2i to get 1-3i.
Re(\frac{\left(4+3i\right)\left(1+3i\right)}{\left(1-3i\right)\left(1+3i\right)})
Multiply both numerator and denominator of \frac{4+3i}{1-3i} by the complex conjugate of the denominator, 1+3i.
Re(\frac{-5+15i}{10})
Do the multiplications in \frac{\left(4+3i\right)\left(1+3i\right)}{\left(1-3i\right)\left(1+3i\right)}.
Re(-\frac{1}{2}+\frac{3}{2}i)
Divide -5+15i by 10 to get -\frac{1}{2}+\frac{3}{2}i.
-\frac{1}{2}
The real part of -\frac{1}{2}+\frac{3}{2}i is -\frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}