Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-3+4i\right)i^{47}}{3-2i-\left(2+i\right)}
Calculate 1+2i to the power of 2 and get -3+4i.
\frac{\left(-3+4i\right)\left(-i\right)}{3-2i-\left(2+i\right)}
Calculate i to the power of 47 and get -i.
\frac{4+3i}{3-2i-\left(2+i\right)}
Multiply -3+4i and -i to get 4+3i.
\frac{4+3i}{1-3i}
Subtract 2+i from 3-2i to get 1-3i.
\frac{\left(4+3i\right)\left(1+3i\right)}{\left(1-3i\right)\left(1+3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1+3i.
\frac{-5+15i}{10}
Do the multiplications in \frac{\left(4+3i\right)\left(1+3i\right)}{\left(1-3i\right)\left(1+3i\right)}.
-\frac{1}{2}+\frac{3}{2}i
Divide -5+15i by 10 to get -\frac{1}{2}+\frac{3}{2}i.
Re(\frac{\left(-3+4i\right)i^{47}}{3-2i-\left(2+i\right)})
Calculate 1+2i to the power of 2 and get -3+4i.
Re(\frac{\left(-3+4i\right)\left(-i\right)}{3-2i-\left(2+i\right)})
Calculate i to the power of 47 and get -i.
Re(\frac{4+3i}{3-2i-\left(2+i\right)})
Multiply -3+4i and -i to get 4+3i.
Re(\frac{4+3i}{1-3i})
Subtract 2+i from 3-2i to get 1-3i.
Re(\frac{\left(4+3i\right)\left(1+3i\right)}{\left(1-3i\right)\left(1+3i\right)})
Multiply both numerator and denominator of \frac{4+3i}{1-3i} by the complex conjugate of the denominator, 1+3i.
Re(\frac{-5+15i}{10})
Do the multiplications in \frac{\left(4+3i\right)\left(1+3i\right)}{\left(1-3i\right)\left(1+3i\right)}.
Re(-\frac{1}{2}+\frac{3}{2}i)
Divide -5+15i by 10 to get -\frac{1}{2}+\frac{3}{2}i.
-\frac{1}{2}
The real part of -\frac{1}{2}+\frac{3}{2}i is -\frac{1}{2}.