Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+2\sqrt{3}\right)^{2}-\left(2-\sqrt{3}\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{8}-2\right)\left(2+2\sqrt{2}\right)}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{1+4\sqrt{3}+4\left(\sqrt{3}\right)^{2}-\left(2-\sqrt{3}\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{8}-2\right)\left(2+2\sqrt{2}\right)}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+2\sqrt{3}\right)^{2}.
\frac{1+4\sqrt{3}+4\times 3-\left(2-\sqrt{3}\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{8}-2\right)\left(2+2\sqrt{2}\right)}
The square of \sqrt{3} is 3.
\frac{1+4\sqrt{3}+12-\left(2-\sqrt{3}\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{8}-2\right)\left(2+2\sqrt{2}\right)}
Multiply 4 and 3 to get 12.
\frac{13+4\sqrt{3}-\left(2-\sqrt{3}\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{8}-2\right)\left(2+2\sqrt{2}\right)}
Add 1 and 12 to get 13.
\frac{13+4\sqrt{3}-\left(2-\sqrt{3}\right)\left(\sqrt{3}-2\right)}{\left(2\sqrt{2}-2\right)\left(2+2\sqrt{2}\right)}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{13+4\sqrt{3}-\left(4\sqrt{3}-4-\left(\sqrt{3}\right)^{2}\right)}{\left(2\sqrt{2}-2\right)\left(2+2\sqrt{2}\right)}
Use the distributive property to multiply 2-\sqrt{3} by \sqrt{3}-2 and combine like terms.
\frac{13+4\sqrt{3}-\left(4\sqrt{3}-4-3\right)}{\left(2\sqrt{2}-2\right)\left(2+2\sqrt{2}\right)}
The square of \sqrt{3} is 3.
\frac{13+4\sqrt{3}-\left(4\sqrt{3}-7\right)}{\left(2\sqrt{2}-2\right)\left(2+2\sqrt{2}\right)}
Subtract 3 from -4 to get -7.
\frac{13+4\sqrt{3}-4\sqrt{3}+7}{\left(2\sqrt{2}-2\right)\left(2+2\sqrt{2}\right)}
To find the opposite of 4\sqrt{3}-7, find the opposite of each term.
\frac{13+7}{\left(2\sqrt{2}-2\right)\left(2+2\sqrt{2}\right)}
Combine 4\sqrt{3} and -4\sqrt{3} to get 0.
\frac{20}{\left(2\sqrt{2}-2\right)\left(2+2\sqrt{2}\right)}
Add 13 and 7 to get 20.
\frac{20}{4\left(\sqrt{2}\right)^{2}-4}
Use the distributive property to multiply 2\sqrt{2}-2 by 2+2\sqrt{2} and combine like terms.
\frac{20}{4\times 2-4}
The square of \sqrt{2} is 2.
\frac{20}{8-4}
Multiply 4 and 2 to get 8.
\frac{20}{4}
Subtract 4 from 8 to get 4.
5
Divide 20 by 4 to get 5.