Skip to main content
Solve for n
Tick mark Image
Solve for n (complex solution)
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+\frac{12}{1200}\right)^{12n}-1}{\frac{0.12}{12}}=20417.42
Expand \frac{0.12}{12} by multiplying both numerator and the denominator by 100.
\frac{\left(1+\frac{1}{100}\right)^{12n}-1}{\frac{0.12}{12}}=20417.42
Reduce the fraction \frac{12}{1200} to lowest terms by extracting and canceling out 12.
\frac{\left(\frac{101}{100}\right)^{12n}-1}{\frac{0.12}{12}}=20417.42
Add 1 and \frac{1}{100} to get \frac{101}{100}.
\frac{\left(\frac{101}{100}\right)^{12n}-1}{\frac{12}{1200}}=20417.42
Expand \frac{0.12}{12} by multiplying both numerator and the denominator by 100.
\frac{\left(\frac{101}{100}\right)^{12n}-1}{\frac{1}{100}}=20417.42
Reduce the fraction \frac{12}{1200} to lowest terms by extracting and canceling out 12.
\frac{\left(\frac{101}{100}\right)^{12n}}{\frac{1}{100}}+\frac{-1}{\frac{1}{100}}=20417.42
Divide each term of \left(\frac{101}{100}\right)^{12n}-1 by \frac{1}{100} to get \frac{\left(\frac{101}{100}\right)^{12n}}{\frac{1}{100}}+\frac{-1}{\frac{1}{100}}.
\frac{\left(\frac{101}{100}\right)^{12n}}{\frac{1}{100}}-100=20417.42
Divide -1 by \frac{1}{100} by multiplying -1 by the reciprocal of \frac{1}{100}.
\frac{\left(\frac{101}{100}\right)^{12n}}{\frac{1}{100}}-100-20417.42=0
Subtract 20417.42 from both sides.
\frac{\left(\frac{101}{100}\right)^{12n}}{\frac{1}{100}}-20517.42=0
Subtract 20417.42 from -100 to get -20517.42.
100\times \left(\frac{101}{100}\right)^{12n}-20517.42=0
Use the rules of exponents and logarithms to solve the equation.
100\times \left(\frac{101}{100}\right)^{12n}=20517.42
Add 20517.42 to both sides of the equation.
\left(\frac{101}{100}\right)^{12n}=205.1742
Divide both sides by 100.
\log(\left(\frac{101}{100}\right)^{12n})=\log(205.1742)
Take the logarithm of both sides of the equation.
12n\log(\frac{101}{100})=\log(205.1742)
The logarithm of a number raised to a power is the power times the logarithm of the number.
12n=\frac{\log(205.1742)}{\log(\frac{101}{100})}
Divide both sides by \log(\frac{101}{100}).
12n=\log_{\frac{101}{100}}\left(205.1742\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
n=\frac{\ln(\frac{1025871}{5000})}{12\ln(\frac{101}{100})}
Divide both sides by 12.