\frac { ( 0,15 - 0,07 ) \cdot 10 } { 810 \cdot 9,8 } + 17 + 4,6
Evaluate
\frac{428654}{19845}\approx 21,600100781
Factor
\frac{2 \cdot 79 \cdot 2713}{5 \cdot 3 ^ {4} \cdot 7 ^ {2}} = 21\frac{11909}{19845} = 21.60010078105316
Share
Copied to clipboard
\frac{0,15-0,07}{9,8\times 81}+17+4,6
Cancel out 10 in both numerator and denominator.
\frac{0,08}{9,8\times 81}+17+4,6
Subtract 0,07 from 0,15 to get 0,08.
\frac{0,08}{793,8}+17+4,6
Multiply 9,8 and 81 to get 793,8.
\frac{8}{79380}+17+4,6
Expand \frac{0,08}{793,8} by multiplying both numerator and the denominator by 100.
\frac{2}{19845}+17+4,6
Reduce the fraction \frac{8}{79380} to lowest terms by extracting and canceling out 4.
\frac{2}{19845}+\frac{337365}{19845}+4,6
Convert 17 to fraction \frac{337365}{19845}.
\frac{2+337365}{19845}+4,6
Since \frac{2}{19845} and \frac{337365}{19845} have the same denominator, add them by adding their numerators.
\frac{337367}{19845}+4,6
Add 2 and 337365 to get 337367.
\frac{337367}{19845}+\frac{23}{5}
Convert decimal number 4,6 to fraction \frac{46}{10}. Reduce the fraction \frac{46}{10} to lowest terms by extracting and canceling out 2.
\frac{337367}{19845}+\frac{91287}{19845}
Least common multiple of 19845 and 5 is 19845. Convert \frac{337367}{19845} and \frac{23}{5} to fractions with denominator 19845.
\frac{337367+91287}{19845}
Since \frac{337367}{19845} and \frac{91287}{19845} have the same denominator, add them by adding their numerators.
\frac{428654}{19845}
Add 337367 and 91287 to get 428654.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}