Solve for x (complex solution)
x=\frac{1+i\times 3\sqrt{3}}{20}\approx 0.05+0.259807621i
x=\frac{-i\times 3\sqrt{3}+1}{20}\approx 0.05-0.259807621i
Graph
Share
Copied to clipboard
\left(0.15+x\right)\left(0.25-x\right)=2.15\times 0.05
Multiply both sides by 0.05.
0.0375+0.1x-x^{2}=2.15\times 0.05
Use the distributive property to multiply 0.15+x by 0.25-x and combine like terms.
0.0375+0.1x-x^{2}=0.1075
Multiply 2.15 and 0.05 to get 0.1075.
0.0375+0.1x-x^{2}-0.1075=0
Subtract 0.1075 from both sides.
-0.07+0.1x-x^{2}=0
Subtract 0.1075 from 0.0375 to get -0.07.
-x^{2}+0.1x-0.07=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-0.1±\sqrt{0.1^{2}-4\left(-1\right)\left(-0.07\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0.1 for b, and -0.07 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-0.1±\sqrt{0.01-4\left(-1\right)\left(-0.07\right)}}{2\left(-1\right)}
Square 0.1 by squaring both the numerator and the denominator of the fraction.
x=\frac{-0.1±\sqrt{0.01+4\left(-0.07\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-0.1±\sqrt{0.01-0.28}}{2\left(-1\right)}
Multiply 4 times -0.07.
x=\frac{-0.1±\sqrt{-0.27}}{2\left(-1\right)}
Add 0.01 to -0.28 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-0.1±\frac{3\sqrt{3}i}{10}}{2\left(-1\right)}
Take the square root of -0.27.
x=\frac{-0.1±\frac{3\sqrt{3}i}{10}}{-2}
Multiply 2 times -1.
x=\frac{-1+3\sqrt{3}i}{-2\times 10}
Now solve the equation x=\frac{-0.1±\frac{3\sqrt{3}i}{10}}{-2} when ± is plus. Add -0.1 to \frac{3i\sqrt{3}}{10}.
x=\frac{-3\sqrt{3}i+1}{20}
Divide \frac{-1+3i\sqrt{3}}{10} by -2.
x=\frac{-3\sqrt{3}i-1}{-2\times 10}
Now solve the equation x=\frac{-0.1±\frac{3\sqrt{3}i}{10}}{-2} when ± is minus. Subtract \frac{3i\sqrt{3}}{10} from -0.1.
x=\frac{1+3\sqrt{3}i}{20}
Divide \frac{-1-3i\sqrt{3}}{10} by -2.
x=\frac{-3\sqrt{3}i+1}{20} x=\frac{1+3\sqrt{3}i}{20}
The equation is now solved.
\left(0.15+x\right)\left(0.25-x\right)=2.15\times 0.05
Multiply both sides by 0.05.
0.0375+0.1x-x^{2}=2.15\times 0.05
Use the distributive property to multiply 0.15+x by 0.25-x and combine like terms.
0.0375+0.1x-x^{2}=0.1075
Multiply 2.15 and 0.05 to get 0.1075.
0.1x-x^{2}=0.1075-0.0375
Subtract 0.0375 from both sides.
0.1x-x^{2}=0.07
Subtract 0.0375 from 0.1075 to get 0.07.
-x^{2}+0.1x=0.07
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+0.1x}{-1}=\frac{0.07}{-1}
Divide both sides by -1.
x^{2}+\frac{0.1}{-1}x=\frac{0.07}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-0.1x=\frac{0.07}{-1}
Divide 0.1 by -1.
x^{2}-0.1x=-0.07
Divide 0.07 by -1.
x^{2}-0.1x+\left(-0.05\right)^{2}=-0.07+\left(-0.05\right)^{2}
Divide -0.1, the coefficient of the x term, by 2 to get -0.05. Then add the square of -0.05 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-0.1x+0.0025=-0.07+0.0025
Square -0.05 by squaring both the numerator and the denominator of the fraction.
x^{2}-0.1x+0.0025=-0.0675
Add -0.07 to 0.0025 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-0.05\right)^{2}=-0.0675
Factor x^{2}-0.1x+0.0025. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-0.05\right)^{2}}=\sqrt{-0.0675}
Take the square root of both sides of the equation.
x-0.05=\frac{3\sqrt{3}i}{20} x-0.05=-\frac{3\sqrt{3}i}{20}
Simplify.
x=\frac{1+3\sqrt{3}i}{20} x=\frac{-3\sqrt{3}i+1}{20}
Add 0.05 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}