Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-7\right)^{-2}\times 11^{-2}\times \frac{1}{3}a^{2}}{21^{-3}\times 22^{-4}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\frac{1}{49}\times 11^{-2}\times \frac{1}{3}a^{2}}{21^{-3}\times 22^{-4}}
Calculate -7 to the power of -2 and get \frac{1}{49}.
\frac{\frac{1}{49}\times \frac{1}{121}\times \frac{1}{3}a^{2}}{21^{-3}\times 22^{-4}}
Calculate 11 to the power of -2 and get \frac{1}{121}.
\frac{\frac{1}{5929}\times \frac{1}{3}a^{2}}{21^{-3}\times 22^{-4}}
Multiply \frac{1}{49} and \frac{1}{121} to get \frac{1}{5929}.
\frac{\frac{1}{17787}a^{2}}{21^{-3}\times 22^{-4}}
Multiply \frac{1}{5929} and \frac{1}{3} to get \frac{1}{17787}.
\frac{\frac{1}{17787}a^{2}}{\frac{1}{9261}\times 22^{-4}}
Calculate 21 to the power of -3 and get \frac{1}{9261}.
\frac{\frac{1}{17787}a^{2}}{\frac{1}{9261}\times \frac{1}{234256}}
Calculate 22 to the power of -4 and get \frac{1}{234256}.
\frac{\frac{1}{17787}a^{2}}{\frac{1}{2169444816}}
Multiply \frac{1}{9261} and \frac{1}{234256} to get \frac{1}{2169444816}.
\frac{1}{17787}a^{2}\times 2169444816
Divide \frac{1}{17787}a^{2} by \frac{1}{2169444816} by multiplying \frac{1}{17787}a^{2} by the reciprocal of \frac{1}{2169444816}.
121968a^{2}
Multiply \frac{1}{17787} and 2169444816 to get 121968.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{17787}}{\frac{1}{2169444816}}a^{-4-\left(-6\right)})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}a}(121968a^{2})
Do the arithmetic.
2\times 121968a^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
243936a^{1}
Do the arithmetic.
243936a
For any term t, t^{1}=t.