\frac { ( - 6,2 ) } { 2 \sqrt { 10 } }
Evaluate
-\frac{31\sqrt{10}}{100}\approx -0.980306075
Share
Copied to clipboard
\frac{-6,2\sqrt{10}}{2\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{-6,2}{2\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{-6,2\sqrt{10}}{2\times 10}
The square of \sqrt{10} is 10.
\frac{-6,2\sqrt{10}}{20}
Multiply 2 and 10 to get 20.
-0,31\sqrt{10}
Divide -6,2\sqrt{10} by 20 to get -0,31\sqrt{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}