Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-4\right)^{5}\left(a^{2}\right)^{5}\left(b^{5}\right)^{5}}{\left(4a^{-3}b^{7}\right)^{-2}}
Expand \left(-4a^{2}b^{5}\right)^{5}.
\frac{\left(-4\right)^{5}a^{10}\left(b^{5}\right)^{5}}{\left(4a^{-3}b^{7}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 5 to get 10.
\frac{\left(-4\right)^{5}a^{10}b^{25}}{\left(4a^{-3}b^{7}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 5 and 5 to get 25.
\frac{-1024a^{10}b^{25}}{\left(4a^{-3}b^{7}\right)^{-2}}
Calculate -4 to the power of 5 and get -1024.
\frac{-1024a^{10}b^{25}}{4^{-2}\left(a^{-3}\right)^{-2}\left(b^{7}\right)^{-2}}
Expand \left(4a^{-3}b^{7}\right)^{-2}.
\frac{-1024a^{10}b^{25}}{4^{-2}a^{6}\left(b^{7}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
\frac{-1024a^{10}b^{25}}{4^{-2}a^{6}b^{-14}}
To raise a power to another power, multiply the exponents. Multiply 7 and -2 to get -14.
\frac{-1024a^{10}b^{25}}{\frac{1}{16}a^{6}b^{-14}}
Calculate 4 to the power of -2 and get \frac{1}{16}.
\frac{-1024a^{4}b^{25}}{\frac{1}{16}b^{-14}}
Cancel out a^{6} in both numerator and denominator.
\frac{-1024a^{4}b^{39}}{\frac{1}{16}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
-1024a^{4}b^{39}\times 16
Divide -1024a^{4}b^{39} by \frac{1}{16} by multiplying -1024a^{4}b^{39} by the reciprocal of \frac{1}{16}.
-16384a^{4}b^{39}
Multiply -1024 and 16 to get -16384.
\frac{\left(-4\right)^{5}\left(a^{2}\right)^{5}\left(b^{5}\right)^{5}}{\left(4a^{-3}b^{7}\right)^{-2}}
Expand \left(-4a^{2}b^{5}\right)^{5}.
\frac{\left(-4\right)^{5}a^{10}\left(b^{5}\right)^{5}}{\left(4a^{-3}b^{7}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 5 to get 10.
\frac{\left(-4\right)^{5}a^{10}b^{25}}{\left(4a^{-3}b^{7}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 5 and 5 to get 25.
\frac{-1024a^{10}b^{25}}{\left(4a^{-3}b^{7}\right)^{-2}}
Calculate -4 to the power of 5 and get -1024.
\frac{-1024a^{10}b^{25}}{4^{-2}\left(a^{-3}\right)^{-2}\left(b^{7}\right)^{-2}}
Expand \left(4a^{-3}b^{7}\right)^{-2}.
\frac{-1024a^{10}b^{25}}{4^{-2}a^{6}\left(b^{7}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
\frac{-1024a^{10}b^{25}}{4^{-2}a^{6}b^{-14}}
To raise a power to another power, multiply the exponents. Multiply 7 and -2 to get -14.
\frac{-1024a^{10}b^{25}}{\frac{1}{16}a^{6}b^{-14}}
Calculate 4 to the power of -2 and get \frac{1}{16}.
\frac{-1024a^{4}b^{25}}{\frac{1}{16}b^{-14}}
Cancel out a^{6} in both numerator and denominator.
\frac{-1024a^{4}b^{39}}{\frac{1}{16}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
-1024a^{4}b^{39}\times 16
Divide -1024a^{4}b^{39} by \frac{1}{16} by multiplying -1024a^{4}b^{39} by the reciprocal of \frac{1}{16}.
-16384a^{4}b^{39}
Multiply -1024 and 16 to get -16384.