Evaluate
-16384a^{4}b^{39}
Expand
-16384a^{4}b^{39}
Share
Copied to clipboard
\frac{\left(-4\right)^{5}\left(a^{2}\right)^{5}\left(b^{5}\right)^{5}}{\left(4a^{-3}b^{7}\right)^{-2}}
Expand \left(-4a^{2}b^{5}\right)^{5}.
\frac{\left(-4\right)^{5}a^{10}\left(b^{5}\right)^{5}}{\left(4a^{-3}b^{7}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 5 to get 10.
\frac{\left(-4\right)^{5}a^{10}b^{25}}{\left(4a^{-3}b^{7}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 5 and 5 to get 25.
\frac{-1024a^{10}b^{25}}{\left(4a^{-3}b^{7}\right)^{-2}}
Calculate -4 to the power of 5 and get -1024.
\frac{-1024a^{10}b^{25}}{4^{-2}\left(a^{-3}\right)^{-2}\left(b^{7}\right)^{-2}}
Expand \left(4a^{-3}b^{7}\right)^{-2}.
\frac{-1024a^{10}b^{25}}{4^{-2}a^{6}\left(b^{7}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
\frac{-1024a^{10}b^{25}}{4^{-2}a^{6}b^{-14}}
To raise a power to another power, multiply the exponents. Multiply 7 and -2 to get -14.
\frac{-1024a^{10}b^{25}}{\frac{1}{16}a^{6}b^{-14}}
Calculate 4 to the power of -2 and get \frac{1}{16}.
\frac{-1024a^{4}b^{25}}{\frac{1}{16}b^{-14}}
Cancel out a^{6} in both numerator and denominator.
\frac{-1024a^{4}b^{39}}{\frac{1}{16}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
-1024a^{4}b^{39}\times 16
Divide -1024a^{4}b^{39} by \frac{1}{16} by multiplying -1024a^{4}b^{39} by the reciprocal of \frac{1}{16}.
-16384a^{4}b^{39}
Multiply -1024 and 16 to get -16384.
\frac{\left(-4\right)^{5}\left(a^{2}\right)^{5}\left(b^{5}\right)^{5}}{\left(4a^{-3}b^{7}\right)^{-2}}
Expand \left(-4a^{2}b^{5}\right)^{5}.
\frac{\left(-4\right)^{5}a^{10}\left(b^{5}\right)^{5}}{\left(4a^{-3}b^{7}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 5 to get 10.
\frac{\left(-4\right)^{5}a^{10}b^{25}}{\left(4a^{-3}b^{7}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 5 and 5 to get 25.
\frac{-1024a^{10}b^{25}}{\left(4a^{-3}b^{7}\right)^{-2}}
Calculate -4 to the power of 5 and get -1024.
\frac{-1024a^{10}b^{25}}{4^{-2}\left(a^{-3}\right)^{-2}\left(b^{7}\right)^{-2}}
Expand \left(4a^{-3}b^{7}\right)^{-2}.
\frac{-1024a^{10}b^{25}}{4^{-2}a^{6}\left(b^{7}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
\frac{-1024a^{10}b^{25}}{4^{-2}a^{6}b^{-14}}
To raise a power to another power, multiply the exponents. Multiply 7 and -2 to get -14.
\frac{-1024a^{10}b^{25}}{\frac{1}{16}a^{6}b^{-14}}
Calculate 4 to the power of -2 and get \frac{1}{16}.
\frac{-1024a^{4}b^{25}}{\frac{1}{16}b^{-14}}
Cancel out a^{6} in both numerator and denominator.
\frac{-1024a^{4}b^{39}}{\frac{1}{16}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
-1024a^{4}b^{39}\times 16
Divide -1024a^{4}b^{39} by \frac{1}{16} by multiplying -1024a^{4}b^{39} by the reciprocal of \frac{1}{16}.
-16384a^{4}b^{39}
Multiply -1024 and 16 to get -16384.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}