Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(-3x\right)^{-3}}{x^{-1}}-9x^{-5}
To multiply powers of the same base, add their exponents. Add -2 and 1 to get -1.
\frac{\left(-3\right)^{-3}x^{-3}}{x^{-1}}-9x^{-5}
Expand \left(-3x\right)^{-3}.
\frac{-\frac{1}{27}x^{-3}}{x^{-1}}-9x^{-5}
Calculate -3 to the power of -3 and get -\frac{1}{27}.
\frac{-\frac{1}{27}}{x^{2}}-9x^{-5}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{-1}{27x^{2}}-9x^{-5}
Express \frac{-\frac{1}{27}}{x^{2}} as a single fraction.
\frac{-1}{27x^{2}}+\frac{-9x^{-5}\times 27x^{2}}{27x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -9x^{-5} times \frac{27x^{2}}{27x^{2}}.
\frac{-1-9x^{-5}\times 27x^{2}}{27x^{2}}
Since \frac{-1}{27x^{2}} and \frac{-9x^{-5}\times 27x^{2}}{27x^{2}} have the same denominator, add them by adding their numerators.
\frac{-1-243x^{-3}}{27x^{2}}
Do the multiplications in -1-9x^{-5}\times 27x^{2}.
\frac{-x^{-3}\left(x^{3}+243\right)}{27x^{2}}
Factor the expressions that are not already factored in \frac{-1-243x^{-3}}{27x^{2}}.
\frac{-\left(x^{3}+243\right)}{27x^{5}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{x^{3}+243}{-27x^{5}}
Cancel out -1 in both numerator and denominator.
\frac{\left(-3x\right)^{-3}}{x^{-1}}-9x^{-5}
To multiply powers of the same base, add their exponents. Add -2 and 1 to get -1.
\frac{\left(-3\right)^{-3}x^{-3}}{x^{-1}}-9x^{-5}
Expand \left(-3x\right)^{-3}.
\frac{-\frac{1}{27}x^{-3}}{x^{-1}}-9x^{-5}
Calculate -3 to the power of -3 and get -\frac{1}{27}.
\frac{-\frac{1}{27}}{x^{2}}-9x^{-5}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{-1}{27x^{2}}-9x^{-5}
Express \frac{-\frac{1}{27}}{x^{2}} as a single fraction.
\frac{-1}{27x^{2}}+\frac{-9x^{-5}\times 27x^{2}}{27x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -9x^{-5} times \frac{27x^{2}}{27x^{2}}.
\frac{-1-9x^{-5}\times 27x^{2}}{27x^{2}}
Since \frac{-1}{27x^{2}} and \frac{-9x^{-5}\times 27x^{2}}{27x^{2}} have the same denominator, add them by adding their numerators.
\frac{-1-243x^{-3}}{27x^{2}}
Do the multiplications in -1-9x^{-5}\times 27x^{2}.
\frac{-x^{-3}\left(x^{3}+243\right)}{27x^{2}}
Factor the expressions that are not already factored in \frac{-1-243x^{-3}}{27x^{2}}.
\frac{-\left(x^{3}+243\right)}{27x^{5}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{x^{3}+243}{-27x^{5}}
Cancel out -1 in both numerator and denominator.