Evaluate
-\frac{1}{27x^{2}}-\frac{9}{x^{5}}
Expand
-\frac{1}{27x^{2}}-\frac{9}{x^{5}}
Graph
Share
Copied to clipboard
\frac{\left(-3x\right)^{-3}}{x^{-1}}-9x^{-5}
To multiply powers of the same base, add their exponents. Add -2 and 1 to get -1.
\frac{\left(-3\right)^{-3}x^{-3}}{x^{-1}}-9x^{-5}
Expand \left(-3x\right)^{-3}.
\frac{-\frac{1}{27}x^{-3}}{x^{-1}}-9x^{-5}
Calculate -3 to the power of -3 and get -\frac{1}{27}.
\frac{-\frac{1}{27}}{x^{2}}-9x^{-5}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{-1}{27x^{2}}-9x^{-5}
Express \frac{-\frac{1}{27}}{x^{2}} as a single fraction.
\frac{-1}{27x^{2}}+\frac{-9x^{-5}\times 27x^{2}}{27x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -9x^{-5} times \frac{27x^{2}}{27x^{2}}.
\frac{-1-9x^{-5}\times 27x^{2}}{27x^{2}}
Since \frac{-1}{27x^{2}} and \frac{-9x^{-5}\times 27x^{2}}{27x^{2}} have the same denominator, add them by adding their numerators.
\frac{-1-243x^{-3}}{27x^{2}}
Do the multiplications in -1-9x^{-5}\times 27x^{2}.
\frac{-x^{-3}\left(x^{3}+243\right)}{27x^{2}}
Factor the expressions that are not already factored in \frac{-1-243x^{-3}}{27x^{2}}.
\frac{-\left(x^{3}+243\right)}{27x^{5}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{x^{3}+243}{-27x^{5}}
Cancel out -1 in both numerator and denominator.
\frac{\left(-3x\right)^{-3}}{x^{-1}}-9x^{-5}
To multiply powers of the same base, add their exponents. Add -2 and 1 to get -1.
\frac{\left(-3\right)^{-3}x^{-3}}{x^{-1}}-9x^{-5}
Expand \left(-3x\right)^{-3}.
\frac{-\frac{1}{27}x^{-3}}{x^{-1}}-9x^{-5}
Calculate -3 to the power of -3 and get -\frac{1}{27}.
\frac{-\frac{1}{27}}{x^{2}}-9x^{-5}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{-1}{27x^{2}}-9x^{-5}
Express \frac{-\frac{1}{27}}{x^{2}} as a single fraction.
\frac{-1}{27x^{2}}+\frac{-9x^{-5}\times 27x^{2}}{27x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -9x^{-5} times \frac{27x^{2}}{27x^{2}}.
\frac{-1-9x^{-5}\times 27x^{2}}{27x^{2}}
Since \frac{-1}{27x^{2}} and \frac{-9x^{-5}\times 27x^{2}}{27x^{2}} have the same denominator, add them by adding their numerators.
\frac{-1-243x^{-3}}{27x^{2}}
Do the multiplications in -1-9x^{-5}\times 27x^{2}.
\frac{-x^{-3}\left(x^{3}+243\right)}{27x^{2}}
Factor the expressions that are not already factored in \frac{-1-243x^{-3}}{27x^{2}}.
\frac{-\left(x^{3}+243\right)}{27x^{5}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{x^{3}+243}{-27x^{5}}
Cancel out -1 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}