Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-3-5i\right)\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3+4i.
\frac{\left(-3-5i\right)\left(3+4i\right)}{3^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-3-5i\right)\left(3+4i\right)}{25}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-3\times 3-3\times \left(4i\right)-5i\times 3-5\times 4i^{2}}{25}
Multiply complex numbers -3-5i and 3+4i like you multiply binomials.
\frac{-3\times 3-3\times \left(4i\right)-5i\times 3-5\times 4\left(-1\right)}{25}
By definition, i^{2} is -1.
\frac{-9-12i-15i+20}{25}
Do the multiplications in -3\times 3-3\times \left(4i\right)-5i\times 3-5\times 4\left(-1\right).
\frac{-9+20+\left(-12-15\right)i}{25}
Combine the real and imaginary parts in -9-12i-15i+20.
\frac{11-27i}{25}
Do the additions in -9+20+\left(-12-15\right)i.
\frac{11}{25}-\frac{27}{25}i
Divide 11-27i by 25 to get \frac{11}{25}-\frac{27}{25}i.
Re(\frac{\left(-3-5i\right)\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)})
Multiply both numerator and denominator of \frac{-3-5i}{3-4i} by the complex conjugate of the denominator, 3+4i.
Re(\frac{\left(-3-5i\right)\left(3+4i\right)}{3^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-3-5i\right)\left(3+4i\right)}{25})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-3\times 3-3\times \left(4i\right)-5i\times 3-5\times 4i^{2}}{25})
Multiply complex numbers -3-5i and 3+4i like you multiply binomials.
Re(\frac{-3\times 3-3\times \left(4i\right)-5i\times 3-5\times 4\left(-1\right)}{25})
By definition, i^{2} is -1.
Re(\frac{-9-12i-15i+20}{25})
Do the multiplications in -3\times 3-3\times \left(4i\right)-5i\times 3-5\times 4\left(-1\right).
Re(\frac{-9+20+\left(-12-15\right)i}{25})
Combine the real and imaginary parts in -9-12i-15i+20.
Re(\frac{11-27i}{25})
Do the additions in -9+20+\left(-12-15\right)i.
Re(\frac{11}{25}-\frac{27}{25}i)
Divide 11-27i by 25 to get \frac{11}{25}-\frac{27}{25}i.
\frac{11}{25}
The real part of \frac{11}{25}-\frac{27}{25}i is \frac{11}{25}.