Evaluate
-\frac{3}{5}=-0.6
Factor
-\frac{3}{5} = -0.6
Share
Copied to clipboard
\frac{\left(-\frac{15}{5}-\frac{1}{5}\right)\left(\frac{3}{8}-\frac{1}{2}+2\right)+\frac{\frac{17}{4}}{\frac{3}{2}-\frac{1}{4}+\frac{1}{6}}}{\frac{2}{11}\left(-\frac{1}{3}+\frac{5}{4}\right)+\frac{9}{2}+\frac{1}{3}}
Convert -3 to fraction -\frac{15}{5}.
\frac{\frac{-15-1}{5}\left(\frac{3}{8}-\frac{1}{2}+2\right)+\frac{\frac{17}{4}}{\frac{3}{2}-\frac{1}{4}+\frac{1}{6}}}{\frac{2}{11}\left(-\frac{1}{3}+\frac{5}{4}\right)+\frac{9}{2}+\frac{1}{3}}
Since -\frac{15}{5} and \frac{1}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{16}{5}\left(\frac{3}{8}-\frac{1}{2}+2\right)+\frac{\frac{17}{4}}{\frac{3}{2}-\frac{1}{4}+\frac{1}{6}}}{\frac{2}{11}\left(-\frac{1}{3}+\frac{5}{4}\right)+\frac{9}{2}+\frac{1}{3}}
Subtract 1 from -15 to get -16.
\frac{-\frac{16}{5}\left(\frac{3}{8}-\frac{4}{8}+2\right)+\frac{\frac{17}{4}}{\frac{3}{2}-\frac{1}{4}+\frac{1}{6}}}{\frac{2}{11}\left(-\frac{1}{3}+\frac{5}{4}\right)+\frac{9}{2}+\frac{1}{3}}
Least common multiple of 8 and 2 is 8. Convert \frac{3}{8} and \frac{1}{2} to fractions with denominator 8.
\frac{-\frac{16}{5}\left(\frac{3-4}{8}+2\right)+\frac{\frac{17}{4}}{\frac{3}{2}-\frac{1}{4}+\frac{1}{6}}}{\frac{2}{11}\left(-\frac{1}{3}+\frac{5}{4}\right)+\frac{9}{2}+\frac{1}{3}}
Since \frac{3}{8} and \frac{4}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{16}{5}\left(-\frac{1}{8}+2\right)+\frac{\frac{17}{4}}{\frac{3}{2}-\frac{1}{4}+\frac{1}{6}}}{\frac{2}{11}\left(-\frac{1}{3}+\frac{5}{4}\right)+\frac{9}{2}+\frac{1}{3}}
Subtract 4 from 3 to get -1.
\frac{-\frac{16}{5}\left(-\frac{1}{8}+\frac{16}{8}\right)+\frac{\frac{17}{4}}{\frac{3}{2}-\frac{1}{4}+\frac{1}{6}}}{\frac{2}{11}\left(-\frac{1}{3}+\frac{5}{4}\right)+\frac{9}{2}+\frac{1}{3}}
Convert 2 to fraction \frac{16}{8}.
\frac{-\frac{16}{5}\times \frac{-1+16}{8}+\frac{\frac{17}{4}}{\frac{3}{2}-\frac{1}{4}+\frac{1}{6}}}{\frac{2}{11}\left(-\frac{1}{3}+\frac{5}{4}\right)+\frac{9}{2}+\frac{1}{3}}
Since -\frac{1}{8} and \frac{16}{8} have the same denominator, add them by adding their numerators.
\frac{-\frac{16}{5}\times \frac{15}{8}+\frac{\frac{17}{4}}{\frac{3}{2}-\frac{1}{4}+\frac{1}{6}}}{\frac{2}{11}\left(-\frac{1}{3}+\frac{5}{4}\right)+\frac{9}{2}+\frac{1}{3}}
Add -1 and 16 to get 15.
\frac{\frac{-16\times 15}{5\times 8}+\frac{\frac{17}{4}}{\frac{3}{2}-\frac{1}{4}+\frac{1}{6}}}{\frac{2}{11}\left(-\frac{1}{3}+\frac{5}{4}\right)+\frac{9}{2}+\frac{1}{3}}
Multiply -\frac{16}{5} times \frac{15}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-240}{40}+\frac{\frac{17}{4}}{\frac{3}{2}-\frac{1}{4}+\frac{1}{6}}}{\frac{2}{11}\left(-\frac{1}{3}+\frac{5}{4}\right)+\frac{9}{2}+\frac{1}{3}}
Do the multiplications in the fraction \frac{-16\times 15}{5\times 8}.
\frac{-6+\frac{\frac{17}{4}}{\frac{3}{2}-\frac{1}{4}+\frac{1}{6}}}{\frac{2}{11}\left(-\frac{1}{3}+\frac{5}{4}\right)+\frac{9}{2}+\frac{1}{3}}
Divide -240 by 40 to get -6.
\frac{-6+\frac{\frac{17}{4}}{\frac{6}{4}-\frac{1}{4}+\frac{1}{6}}}{\frac{2}{11}\left(-\frac{1}{3}+\frac{5}{4}\right)+\frac{9}{2}+\frac{1}{3}}
Least common multiple of 2 and 4 is 4. Convert \frac{3}{2} and \frac{1}{4} to fractions with denominator 4.
\frac{-6+\frac{\frac{17}{4}}{\frac{6-1}{4}+\frac{1}{6}}}{\frac{2}{11}\left(-\frac{1}{3}+\frac{5}{4}\right)+\frac{9}{2}+\frac{1}{3}}
Since \frac{6}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{-6+\frac{\frac{17}{4}}{\frac{5}{4}+\frac{1}{6}}}{\frac{2}{11}\left(-\frac{1}{3}+\frac{5}{4}\right)+\frac{9}{2}+\frac{1}{3}}
Subtract 1 from 6 to get 5.
\frac{-6+\frac{\frac{17}{4}}{\frac{15}{12}+\frac{2}{12}}}{\frac{2}{11}\left(-\frac{1}{3}+\frac{5}{4}\right)+\frac{9}{2}+\frac{1}{3}}
Least common multiple of 4 and 6 is 12. Convert \frac{5}{4} and \frac{1}{6} to fractions with denominator 12.
\frac{-6+\frac{\frac{17}{4}}{\frac{15+2}{12}}}{\frac{2}{11}\left(-\frac{1}{3}+\frac{5}{4}\right)+\frac{9}{2}+\frac{1}{3}}
Since \frac{15}{12} and \frac{2}{12} have the same denominator, add them by adding their numerators.
\frac{-6+\frac{\frac{17}{4}}{\frac{17}{12}}}{\frac{2}{11}\left(-\frac{1}{3}+\frac{5}{4}\right)+\frac{9}{2}+\frac{1}{3}}
Add 15 and 2 to get 17.
\frac{-6+\frac{17}{4}\times \frac{12}{17}}{\frac{2}{11}\left(-\frac{1}{3}+\frac{5}{4}\right)+\frac{9}{2}+\frac{1}{3}}
Divide \frac{17}{4} by \frac{17}{12} by multiplying \frac{17}{4} by the reciprocal of \frac{17}{12}.
\frac{-6+\frac{17\times 12}{4\times 17}}{\frac{2}{11}\left(-\frac{1}{3}+\frac{5}{4}\right)+\frac{9}{2}+\frac{1}{3}}
Multiply \frac{17}{4} times \frac{12}{17} by multiplying numerator times numerator and denominator times denominator.
\frac{-6+\frac{12}{4}}{\frac{2}{11}\left(-\frac{1}{3}+\frac{5}{4}\right)+\frac{9}{2}+\frac{1}{3}}
Cancel out 17 in both numerator and denominator.
\frac{-6+3}{\frac{2}{11}\left(-\frac{1}{3}+\frac{5}{4}\right)+\frac{9}{2}+\frac{1}{3}}
Divide 12 by 4 to get 3.
\frac{-3}{\frac{2}{11}\left(-\frac{1}{3}+\frac{5}{4}\right)+\frac{9}{2}+\frac{1}{3}}
Add -6 and 3 to get -3.
\frac{-3}{\frac{2}{11}\left(-\frac{4}{12}+\frac{15}{12}\right)+\frac{9}{2}+\frac{1}{3}}
Least common multiple of 3 and 4 is 12. Convert -\frac{1}{3} and \frac{5}{4} to fractions with denominator 12.
\frac{-3}{\frac{2}{11}\times \frac{-4+15}{12}+\frac{9}{2}+\frac{1}{3}}
Since -\frac{4}{12} and \frac{15}{12} have the same denominator, add them by adding their numerators.
\frac{-3}{\frac{2}{11}\times \frac{11}{12}+\frac{9}{2}+\frac{1}{3}}
Add -4 and 15 to get 11.
\frac{-3}{\frac{2\times 11}{11\times 12}+\frac{9}{2}+\frac{1}{3}}
Multiply \frac{2}{11} times \frac{11}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{-3}{\frac{2}{12}+\frac{9}{2}+\frac{1}{3}}
Cancel out 11 in both numerator and denominator.
\frac{-3}{\frac{1}{6}+\frac{9}{2}+\frac{1}{3}}
Reduce the fraction \frac{2}{12} to lowest terms by extracting and canceling out 2.
\frac{-3}{\frac{1}{6}+\frac{27}{6}+\frac{1}{3}}
Least common multiple of 6 and 2 is 6. Convert \frac{1}{6} and \frac{9}{2} to fractions with denominator 6.
\frac{-3}{\frac{1+27}{6}+\frac{1}{3}}
Since \frac{1}{6} and \frac{27}{6} have the same denominator, add them by adding their numerators.
\frac{-3}{\frac{28}{6}+\frac{1}{3}}
Add 1 and 27 to get 28.
\frac{-3}{\frac{14}{3}+\frac{1}{3}}
Reduce the fraction \frac{28}{6} to lowest terms by extracting and canceling out 2.
\frac{-3}{\frac{14+1}{3}}
Since \frac{14}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{-3}{\frac{15}{3}}
Add 14 and 1 to get 15.
\frac{-3}{5}
Divide 15 by 3 to get 5.
-\frac{3}{5}
Fraction \frac{-3}{5} can be rewritten as -\frac{3}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}