Evaluate
-27pq^{4}
Differentiate w.r.t. p
-27q^{4}
Share
Copied to clipboard
\frac{\left(-3\right)^{4}p^{2}q^{5}}{\left(-3\right)^{1}p^{1}q^{1}}
Use the rules of exponents to simplify the expression.
\left(-3\right)^{4-1}p^{2-1}q^{5-1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\left(-3\right)^{3}p^{2-1}q^{5-1}
Subtract 1 from 4.
-27p^{1}q^{5-1}
Subtract 1 from 2.
-27p^{1}q^{4}
Subtract 1 from 5.
-27pq^{4}
For any term t, t^{1}=t.
\frac{\mathrm{d}}{\mathrm{d}p}(\frac{81q^{5}}{-3q}p^{2-1})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}p}(\left(-27q^{4}\right)p^{1})
Do the arithmetic.
\left(-27q^{4}\right)p^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\left(-27q^{4}\right)p^{0}
Do the arithmetic.
\left(-27q^{4}\right)\times 1
For any term t except 0, t^{0}=1.
-27q^{4}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}