Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{1}{y}x^{2}\right)^{3}\left(-2xy\right)^{2}}{4\left(xy\right)^{-3}}
Cancel out 2 in both numerator and denominator.
\frac{\left(\frac{x^{2}}{y}\right)^{3}\left(-2xy\right)^{2}}{4\left(xy\right)^{-3}}
Express \frac{1}{y}x^{2} as a single fraction.
\frac{\frac{\left(x^{2}\right)^{3}}{y^{3}}\left(-2xy\right)^{2}}{4\left(xy\right)^{-3}}
To raise \frac{x^{2}}{y} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(x^{2}\right)^{3}}{y^{3}}\left(-2\right)^{2}x^{2}y^{2}}{4\left(xy\right)^{-3}}
Expand \left(-2xy\right)^{2}.
\frac{\frac{\left(x^{2}\right)^{3}}{y^{3}}\times 4x^{2}y^{2}}{4\left(xy\right)^{-3}}
Calculate -2 to the power of 2 and get 4.
\frac{\frac{\left(x^{2}\right)^{3}\times 4}{y^{3}}x^{2}y^{2}}{4\left(xy\right)^{-3}}
Express \frac{\left(x^{2}\right)^{3}}{y^{3}}\times 4 as a single fraction.
\frac{\frac{\left(x^{2}\right)^{3}\times 4x^{2}}{y^{3}}y^{2}}{4\left(xy\right)^{-3}}
Express \frac{\left(x^{2}\right)^{3}\times 4}{y^{3}}x^{2} as a single fraction.
\frac{\frac{\left(x^{2}\right)^{3}\times 4x^{2}y^{2}}{y^{3}}}{4\left(xy\right)^{-3}}
Express \frac{\left(x^{2}\right)^{3}\times 4x^{2}}{y^{3}}y^{2} as a single fraction.
\frac{\frac{4x^{2}\left(x^{2}\right)^{3}}{y}}{4\left(xy\right)^{-3}}
Cancel out y^{2} in both numerator and denominator.
\frac{\frac{4x^{2}\left(x^{2}\right)^{3}}{y}}{4x^{-3}y^{-3}}
Expand \left(xy\right)^{-3}.
\frac{4x^{2}\left(x^{2}\right)^{3}}{y\times 4x^{-3}y^{-3}}
Express \frac{\frac{4x^{2}\left(x^{2}\right)^{3}}{y}}{4x^{-3}y^{-3}} as a single fraction.
\frac{x^{2}\left(x^{2}\right)^{3}}{x^{-3}y^{-3}y}
Cancel out 4 in both numerator and denominator.
\frac{x^{5}\left(x^{2}\right)^{3}}{y^{-3}y}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{x^{5}x^{6}}{y^{-3}y}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{x^{11}}{y^{-3}y}
To multiply powers of the same base, add their exponents. Add 5 and 6 to get 11.
\frac{x^{11}}{y^{-2}}
To multiply powers of the same base, add their exponents. Add -3 and 1 to get -2.
\frac{\left(\frac{1}{y}x^{2}\right)^{3}\left(-2xy\right)^{2}}{4\left(xy\right)^{-3}}
Cancel out 2 in both numerator and denominator.
\frac{\left(\frac{x^{2}}{y}\right)^{3}\left(-2xy\right)^{2}}{4\left(xy\right)^{-3}}
Express \frac{1}{y}x^{2} as a single fraction.
\frac{\frac{\left(x^{2}\right)^{3}}{y^{3}}\left(-2xy\right)^{2}}{4\left(xy\right)^{-3}}
To raise \frac{x^{2}}{y} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(x^{2}\right)^{3}}{y^{3}}\left(-2\right)^{2}x^{2}y^{2}}{4\left(xy\right)^{-3}}
Expand \left(-2xy\right)^{2}.
\frac{\frac{\left(x^{2}\right)^{3}}{y^{3}}\times 4x^{2}y^{2}}{4\left(xy\right)^{-3}}
Calculate -2 to the power of 2 and get 4.
\frac{\frac{\left(x^{2}\right)^{3}\times 4}{y^{3}}x^{2}y^{2}}{4\left(xy\right)^{-3}}
Express \frac{\left(x^{2}\right)^{3}}{y^{3}}\times 4 as a single fraction.
\frac{\frac{\left(x^{2}\right)^{3}\times 4x^{2}}{y^{3}}y^{2}}{4\left(xy\right)^{-3}}
Express \frac{\left(x^{2}\right)^{3}\times 4}{y^{3}}x^{2} as a single fraction.
\frac{\frac{\left(x^{2}\right)^{3}\times 4x^{2}y^{2}}{y^{3}}}{4\left(xy\right)^{-3}}
Express \frac{\left(x^{2}\right)^{3}\times 4x^{2}}{y^{3}}y^{2} as a single fraction.
\frac{\frac{4x^{2}\left(x^{2}\right)^{3}}{y}}{4\left(xy\right)^{-3}}
Cancel out y^{2} in both numerator and denominator.
\frac{\frac{4x^{2}\left(x^{2}\right)^{3}}{y}}{4x^{-3}y^{-3}}
Expand \left(xy\right)^{-3}.
\frac{4x^{2}\left(x^{2}\right)^{3}}{y\times 4x^{-3}y^{-3}}
Express \frac{\frac{4x^{2}\left(x^{2}\right)^{3}}{y}}{4x^{-3}y^{-3}} as a single fraction.
\frac{x^{2}\left(x^{2}\right)^{3}}{x^{-3}y^{-3}y}
Cancel out 4 in both numerator and denominator.
\frac{x^{5}\left(x^{2}\right)^{3}}{y^{-3}y}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{x^{5}x^{6}}{y^{-3}y}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{x^{11}}{y^{-3}y}
To multiply powers of the same base, add their exponents. Add 5 and 6 to get 11.
\frac{x^{11}}{y^{-2}}
To multiply powers of the same base, add their exponents. Add -3 and 1 to get -2.