Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-2\right)^{2}\left(k^{-3}\right)^{2}\times \left(6k^{2}\right)^{4}}{\left(9k^{4}\right)^{2}}
Expand \left(-2k^{-3}\right)^{2}.
\frac{\left(-2\right)^{2}k^{-6}\times \left(6k^{2}\right)^{4}}{\left(9k^{4}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
\frac{4k^{-6}\times \left(6k^{2}\right)^{4}}{\left(9k^{4}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{4k^{-6}\times 6^{4}\left(k^{2}\right)^{4}}{\left(9k^{4}\right)^{2}}
Expand \left(6k^{2}\right)^{4}.
\frac{4k^{-6}\times 6^{4}k^{8}}{\left(9k^{4}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 4 to get 8.
\frac{4k^{-6}\times 1296k^{8}}{\left(9k^{4}\right)^{2}}
Calculate 6 to the power of 4 and get 1296.
\frac{5184k^{-6}k^{8}}{\left(9k^{4}\right)^{2}}
Multiply 4 and 1296 to get 5184.
\frac{5184k^{2}}{\left(9k^{4}\right)^{2}}
To multiply powers of the same base, add their exponents. Add -6 and 8 to get 2.
\frac{5184k^{2}}{9^{2}\left(k^{4}\right)^{2}}
Expand \left(9k^{4}\right)^{2}.
\frac{5184k^{2}}{9^{2}k^{8}}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\frac{5184k^{2}}{81k^{8}}
Calculate 9 to the power of 2 and get 81.
\frac{64}{k^{6}}
Cancel out 81k^{2} in both numerator and denominator.
\frac{\left(-2\right)^{2}\left(k^{-3}\right)^{2}\times \left(6k^{2}\right)^{4}}{\left(9k^{4}\right)^{2}}
Expand \left(-2k^{-3}\right)^{2}.
\frac{\left(-2\right)^{2}k^{-6}\times \left(6k^{2}\right)^{4}}{\left(9k^{4}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
\frac{4k^{-6}\times \left(6k^{2}\right)^{4}}{\left(9k^{4}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{4k^{-6}\times 6^{4}\left(k^{2}\right)^{4}}{\left(9k^{4}\right)^{2}}
Expand \left(6k^{2}\right)^{4}.
\frac{4k^{-6}\times 6^{4}k^{8}}{\left(9k^{4}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 4 to get 8.
\frac{4k^{-6}\times 1296k^{8}}{\left(9k^{4}\right)^{2}}
Calculate 6 to the power of 4 and get 1296.
\frac{5184k^{-6}k^{8}}{\left(9k^{4}\right)^{2}}
Multiply 4 and 1296 to get 5184.
\frac{5184k^{2}}{\left(9k^{4}\right)^{2}}
To multiply powers of the same base, add their exponents. Add -6 and 8 to get 2.
\frac{5184k^{2}}{9^{2}\left(k^{4}\right)^{2}}
Expand \left(9k^{4}\right)^{2}.
\frac{5184k^{2}}{9^{2}k^{8}}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\frac{5184k^{2}}{81k^{8}}
Calculate 9 to the power of 2 and get 81.
\frac{64}{k^{6}}
Cancel out 81k^{2} in both numerator and denominator.