Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-2\right)^{3}\left(a^{-4}\right)^{3}\left(b^{2}\right)^{3}}{4ab^{10}}\times \frac{12^{-1}a^{3}b}{\left(3a^{5}b^{0}\right)^{-2}}
Expand \left(-2a^{-4}b^{2}\right)^{3}.
\frac{\left(-2\right)^{3}a^{-12}\left(b^{2}\right)^{3}}{4ab^{10}}\times \frac{12^{-1}a^{3}b}{\left(3a^{5}b^{0}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply -4 and 3 to get -12.
\frac{\left(-2\right)^{3}a^{-12}b^{6}}{4ab^{10}}\times \frac{12^{-1}a^{3}b}{\left(3a^{5}b^{0}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{-8a^{-12}b^{6}}{4ab^{10}}\times \frac{12^{-1}a^{3}b}{\left(3a^{5}b^{0}\right)^{-2}}
Calculate -2 to the power of 3 and get -8.
\frac{-2a^{-12}}{ab^{4}}\times \frac{12^{-1}a^{3}b}{\left(3a^{5}b^{0}\right)^{-2}}
Cancel out 4b^{6} in both numerator and denominator.
\frac{-2}{b^{4}a^{13}}\times \frac{12^{-1}a^{3}b}{\left(3a^{5}b^{0}\right)^{-2}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{-2}{b^{4}a^{13}}\times \frac{\frac{1}{12}a^{3}b}{\left(3a^{5}b^{0}\right)^{-2}}
Calculate 12 to the power of -1 and get \frac{1}{12}.
\frac{-2}{b^{4}a^{13}}\times \frac{\frac{1}{12}a^{3}b}{\left(3a^{5}\times 1\right)^{-2}}
Calculate b to the power of 0 and get 1.
\frac{-2}{b^{4}a^{13}}\times \frac{\frac{1}{12}a^{3}b}{\left(3a^{5}\right)^{-2}}
Multiply 3 and 1 to get 3.
\frac{-2}{b^{4}a^{13}}\times \frac{\frac{1}{12}a^{3}b}{3^{-2}\left(a^{5}\right)^{-2}}
Expand \left(3a^{5}\right)^{-2}.
\frac{-2}{b^{4}a^{13}}\times \frac{\frac{1}{12}a^{3}b}{3^{-2}a^{-10}}
To raise a power to another power, multiply the exponents. Multiply 5 and -2 to get -10.
\frac{-2}{b^{4}a^{13}}\times \frac{\frac{1}{12}a^{3}b}{\frac{1}{9}a^{-10}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{-2}{b^{4}a^{13}}\times \frac{\frac{1}{12}ba^{13}}{\frac{1}{9}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{-2}{b^{4}a^{13}}\times \frac{1}{12}ba^{13}\times 9
Divide \frac{1}{12}ba^{13} by \frac{1}{9} by multiplying \frac{1}{12}ba^{13} by the reciprocal of \frac{1}{9}.
\frac{-2}{b^{4}a^{13}}\times \frac{3}{4}ba^{13}
Multiply \frac{1}{12} and 9 to get \frac{3}{4}.
\frac{-2\times 3}{b^{4}a^{13}\times 4}ba^{13}
Multiply \frac{-2}{b^{4}a^{13}} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{-3}{2b^{4}a^{13}}ba^{13}
Cancel out 2 in both numerator and denominator.
\frac{-3b}{2b^{4}a^{13}}a^{13}
Express \frac{-3}{2b^{4}a^{13}}b as a single fraction.
\frac{-3}{2b^{3}a^{13}}a^{13}
Cancel out b in both numerator and denominator.
\frac{-3a^{13}}{2b^{3}a^{13}}
Express \frac{-3}{2b^{3}a^{13}}a^{13} as a single fraction.
\frac{-3}{2b^{3}}
Cancel out a^{13} in both numerator and denominator.
\frac{\left(-2\right)^{3}\left(a^{-4}\right)^{3}\left(b^{2}\right)^{3}}{4ab^{10}}\times \frac{12^{-1}a^{3}b}{\left(3a^{5}b^{0}\right)^{-2}}
Expand \left(-2a^{-4}b^{2}\right)^{3}.
\frac{\left(-2\right)^{3}a^{-12}\left(b^{2}\right)^{3}}{4ab^{10}}\times \frac{12^{-1}a^{3}b}{\left(3a^{5}b^{0}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply -4 and 3 to get -12.
\frac{\left(-2\right)^{3}a^{-12}b^{6}}{4ab^{10}}\times \frac{12^{-1}a^{3}b}{\left(3a^{5}b^{0}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{-8a^{-12}b^{6}}{4ab^{10}}\times \frac{12^{-1}a^{3}b}{\left(3a^{5}b^{0}\right)^{-2}}
Calculate -2 to the power of 3 and get -8.
\frac{-2a^{-12}}{ab^{4}}\times \frac{12^{-1}a^{3}b}{\left(3a^{5}b^{0}\right)^{-2}}
Cancel out 4b^{6} in both numerator and denominator.
\frac{-2}{b^{4}a^{13}}\times \frac{12^{-1}a^{3}b}{\left(3a^{5}b^{0}\right)^{-2}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{-2}{b^{4}a^{13}}\times \frac{\frac{1}{12}a^{3}b}{\left(3a^{5}b^{0}\right)^{-2}}
Calculate 12 to the power of -1 and get \frac{1}{12}.
\frac{-2}{b^{4}a^{13}}\times \frac{\frac{1}{12}a^{3}b}{\left(3a^{5}\times 1\right)^{-2}}
Calculate b to the power of 0 and get 1.
\frac{-2}{b^{4}a^{13}}\times \frac{\frac{1}{12}a^{3}b}{\left(3a^{5}\right)^{-2}}
Multiply 3 and 1 to get 3.
\frac{-2}{b^{4}a^{13}}\times \frac{\frac{1}{12}a^{3}b}{3^{-2}\left(a^{5}\right)^{-2}}
Expand \left(3a^{5}\right)^{-2}.
\frac{-2}{b^{4}a^{13}}\times \frac{\frac{1}{12}a^{3}b}{3^{-2}a^{-10}}
To raise a power to another power, multiply the exponents. Multiply 5 and -2 to get -10.
\frac{-2}{b^{4}a^{13}}\times \frac{\frac{1}{12}a^{3}b}{\frac{1}{9}a^{-10}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{-2}{b^{4}a^{13}}\times \frac{\frac{1}{12}ba^{13}}{\frac{1}{9}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{-2}{b^{4}a^{13}}\times \frac{1}{12}ba^{13}\times 9
Divide \frac{1}{12}ba^{13} by \frac{1}{9} by multiplying \frac{1}{12}ba^{13} by the reciprocal of \frac{1}{9}.
\frac{-2}{b^{4}a^{13}}\times \frac{3}{4}ba^{13}
Multiply \frac{1}{12} and 9 to get \frac{3}{4}.
\frac{-2\times 3}{b^{4}a^{13}\times 4}ba^{13}
Multiply \frac{-2}{b^{4}a^{13}} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{-3}{2b^{4}a^{13}}ba^{13}
Cancel out 2 in both numerator and denominator.
\frac{-3b}{2b^{4}a^{13}}a^{13}
Express \frac{-3}{2b^{4}a^{13}}b as a single fraction.
\frac{-3}{2b^{3}a^{13}}a^{13}
Cancel out b in both numerator and denominator.
\frac{-3a^{13}}{2b^{3}a^{13}}
Express \frac{-3}{2b^{3}a^{13}}a^{13} as a single fraction.
\frac{-3}{2b^{3}}
Cancel out a^{13} in both numerator and denominator.