Evaluate
\frac{2a}{x^{18}}
Expand
\frac{2a}{x^{18}}
Graph
Share
Copied to clipboard
\frac{\left(-16\right)^{3}\left(a^{5}\right)^{3}\left(x^{3}\right)^{3}}{\left(4a^{3}x^{4}\right)^{3}\left(-2ax^{3}\right)^{5}}
Expand \left(-16a^{5}x^{3}\right)^{3}.
\frac{\left(-16\right)^{3}a^{15}\left(x^{3}\right)^{3}}{\left(4a^{3}x^{4}\right)^{3}\left(-2ax^{3}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{\left(-16\right)^{3}a^{15}x^{9}}{\left(4a^{3}x^{4}\right)^{3}\left(-2ax^{3}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{-4096a^{15}x^{9}}{\left(4a^{3}x^{4}\right)^{3}\left(-2ax^{3}\right)^{5}}
Calculate -16 to the power of 3 and get -4096.
\frac{-4096a^{15}x^{9}}{4^{3}\left(a^{3}\right)^{3}\left(x^{4}\right)^{3}\left(-2ax^{3}\right)^{5}}
Expand \left(4a^{3}x^{4}\right)^{3}.
\frac{-4096a^{15}x^{9}}{4^{3}a^{9}\left(x^{4}\right)^{3}\left(-2ax^{3}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{-4096a^{15}x^{9}}{4^{3}a^{9}x^{12}\left(-2ax^{3}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\frac{-4096a^{15}x^{9}}{64a^{9}x^{12}\left(-2ax^{3}\right)^{5}}
Calculate 4 to the power of 3 and get 64.
\frac{-4096a^{15}x^{9}}{64a^{9}x^{12}\left(-2\right)^{5}a^{5}\left(x^{3}\right)^{5}}
Expand \left(-2ax^{3}\right)^{5}.
\frac{-4096a^{15}x^{9}}{64a^{9}x^{12}\left(-2\right)^{5}a^{5}x^{15}}
To raise a power to another power, multiply the exponents. Multiply 3 and 5 to get 15.
\frac{-4096a^{15}x^{9}}{64a^{9}x^{12}\left(-32\right)a^{5}x^{15}}
Calculate -2 to the power of 5 and get -32.
\frac{-4096a^{15}x^{9}}{-2048a^{9}x^{12}a^{5}x^{15}}
Multiply 64 and -32 to get -2048.
\frac{-4096a^{15}x^{9}}{-2048a^{14}x^{12}x^{15}}
To multiply powers of the same base, add their exponents. Add 9 and 5 to get 14.
\frac{-4096a^{15}x^{9}}{-2048a^{14}x^{27}}
To multiply powers of the same base, add their exponents. Add 12 and 15 to get 27.
\frac{-2a}{-x^{18}}
Cancel out 2048x^{9}a^{14} in both numerator and denominator.
\frac{2a}{x^{18}}
Cancel out -1 in both numerator and denominator.
\frac{\left(-16\right)^{3}\left(a^{5}\right)^{3}\left(x^{3}\right)^{3}}{\left(4a^{3}x^{4}\right)^{3}\left(-2ax^{3}\right)^{5}}
Expand \left(-16a^{5}x^{3}\right)^{3}.
\frac{\left(-16\right)^{3}a^{15}\left(x^{3}\right)^{3}}{\left(4a^{3}x^{4}\right)^{3}\left(-2ax^{3}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{\left(-16\right)^{3}a^{15}x^{9}}{\left(4a^{3}x^{4}\right)^{3}\left(-2ax^{3}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{-4096a^{15}x^{9}}{\left(4a^{3}x^{4}\right)^{3}\left(-2ax^{3}\right)^{5}}
Calculate -16 to the power of 3 and get -4096.
\frac{-4096a^{15}x^{9}}{4^{3}\left(a^{3}\right)^{3}\left(x^{4}\right)^{3}\left(-2ax^{3}\right)^{5}}
Expand \left(4a^{3}x^{4}\right)^{3}.
\frac{-4096a^{15}x^{9}}{4^{3}a^{9}\left(x^{4}\right)^{3}\left(-2ax^{3}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{-4096a^{15}x^{9}}{4^{3}a^{9}x^{12}\left(-2ax^{3}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\frac{-4096a^{15}x^{9}}{64a^{9}x^{12}\left(-2ax^{3}\right)^{5}}
Calculate 4 to the power of 3 and get 64.
\frac{-4096a^{15}x^{9}}{64a^{9}x^{12}\left(-2\right)^{5}a^{5}\left(x^{3}\right)^{5}}
Expand \left(-2ax^{3}\right)^{5}.
\frac{-4096a^{15}x^{9}}{64a^{9}x^{12}\left(-2\right)^{5}a^{5}x^{15}}
To raise a power to another power, multiply the exponents. Multiply 3 and 5 to get 15.
\frac{-4096a^{15}x^{9}}{64a^{9}x^{12}\left(-32\right)a^{5}x^{15}}
Calculate -2 to the power of 5 and get -32.
\frac{-4096a^{15}x^{9}}{-2048a^{9}x^{12}a^{5}x^{15}}
Multiply 64 and -32 to get -2048.
\frac{-4096a^{15}x^{9}}{-2048a^{14}x^{12}x^{15}}
To multiply powers of the same base, add their exponents. Add 9 and 5 to get 14.
\frac{-4096a^{15}x^{9}}{-2048a^{14}x^{27}}
To multiply powers of the same base, add their exponents. Add 12 and 15 to get 27.
\frac{-2a}{-x^{18}}
Cancel out 2048x^{9}a^{14} in both numerator and denominator.
\frac{2a}{x^{18}}
Cancel out -1 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}