Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(-16\right)^{3}\left(a^{5}\right)^{3}\left(x^{3}\right)^{3}}{\left(4a^{3}x^{4}\right)^{3}\left(-2ax^{3}\right)^{5}}
Expand \left(-16a^{5}x^{3}\right)^{3}.
\frac{\left(-16\right)^{3}a^{15}\left(x^{3}\right)^{3}}{\left(4a^{3}x^{4}\right)^{3}\left(-2ax^{3}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{\left(-16\right)^{3}a^{15}x^{9}}{\left(4a^{3}x^{4}\right)^{3}\left(-2ax^{3}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{-4096a^{15}x^{9}}{\left(4a^{3}x^{4}\right)^{3}\left(-2ax^{3}\right)^{5}}
Calculate -16 to the power of 3 and get -4096.
\frac{-4096a^{15}x^{9}}{4^{3}\left(a^{3}\right)^{3}\left(x^{4}\right)^{3}\left(-2ax^{3}\right)^{5}}
Expand \left(4a^{3}x^{4}\right)^{3}.
\frac{-4096a^{15}x^{9}}{4^{3}a^{9}\left(x^{4}\right)^{3}\left(-2ax^{3}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{-4096a^{15}x^{9}}{4^{3}a^{9}x^{12}\left(-2ax^{3}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\frac{-4096a^{15}x^{9}}{64a^{9}x^{12}\left(-2ax^{3}\right)^{5}}
Calculate 4 to the power of 3 and get 64.
\frac{-4096a^{15}x^{9}}{64a^{9}x^{12}\left(-2\right)^{5}a^{5}\left(x^{3}\right)^{5}}
Expand \left(-2ax^{3}\right)^{5}.
\frac{-4096a^{15}x^{9}}{64a^{9}x^{12}\left(-2\right)^{5}a^{5}x^{15}}
To raise a power to another power, multiply the exponents. Multiply 3 and 5 to get 15.
\frac{-4096a^{15}x^{9}}{64a^{9}x^{12}\left(-32\right)a^{5}x^{15}}
Calculate -2 to the power of 5 and get -32.
\frac{-4096a^{15}x^{9}}{-2048a^{9}x^{12}a^{5}x^{15}}
Multiply 64 and -32 to get -2048.
\frac{-4096a^{15}x^{9}}{-2048a^{14}x^{12}x^{15}}
To multiply powers of the same base, add their exponents. Add 9 and 5 to get 14.
\frac{-4096a^{15}x^{9}}{-2048a^{14}x^{27}}
To multiply powers of the same base, add their exponents. Add 12 and 15 to get 27.
\frac{-2a}{-x^{18}}
Cancel out 2048x^{9}a^{14} in both numerator and denominator.
\frac{2a}{x^{18}}
Cancel out -1 in both numerator and denominator.
\frac{\left(-16\right)^{3}\left(a^{5}\right)^{3}\left(x^{3}\right)^{3}}{\left(4a^{3}x^{4}\right)^{3}\left(-2ax^{3}\right)^{5}}
Expand \left(-16a^{5}x^{3}\right)^{3}.
\frac{\left(-16\right)^{3}a^{15}\left(x^{3}\right)^{3}}{\left(4a^{3}x^{4}\right)^{3}\left(-2ax^{3}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{\left(-16\right)^{3}a^{15}x^{9}}{\left(4a^{3}x^{4}\right)^{3}\left(-2ax^{3}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{-4096a^{15}x^{9}}{\left(4a^{3}x^{4}\right)^{3}\left(-2ax^{3}\right)^{5}}
Calculate -16 to the power of 3 and get -4096.
\frac{-4096a^{15}x^{9}}{4^{3}\left(a^{3}\right)^{3}\left(x^{4}\right)^{3}\left(-2ax^{3}\right)^{5}}
Expand \left(4a^{3}x^{4}\right)^{3}.
\frac{-4096a^{15}x^{9}}{4^{3}a^{9}\left(x^{4}\right)^{3}\left(-2ax^{3}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{-4096a^{15}x^{9}}{4^{3}a^{9}x^{12}\left(-2ax^{3}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\frac{-4096a^{15}x^{9}}{64a^{9}x^{12}\left(-2ax^{3}\right)^{5}}
Calculate 4 to the power of 3 and get 64.
\frac{-4096a^{15}x^{9}}{64a^{9}x^{12}\left(-2\right)^{5}a^{5}\left(x^{3}\right)^{5}}
Expand \left(-2ax^{3}\right)^{5}.
\frac{-4096a^{15}x^{9}}{64a^{9}x^{12}\left(-2\right)^{5}a^{5}x^{15}}
To raise a power to another power, multiply the exponents. Multiply 3 and 5 to get 15.
\frac{-4096a^{15}x^{9}}{64a^{9}x^{12}\left(-32\right)a^{5}x^{15}}
Calculate -2 to the power of 5 and get -32.
\frac{-4096a^{15}x^{9}}{-2048a^{9}x^{12}a^{5}x^{15}}
Multiply 64 and -32 to get -2048.
\frac{-4096a^{15}x^{9}}{-2048a^{14}x^{12}x^{15}}
To multiply powers of the same base, add their exponents. Add 9 and 5 to get 14.
\frac{-4096a^{15}x^{9}}{-2048a^{14}x^{27}}
To multiply powers of the same base, add their exponents. Add 12 and 15 to get 27.
\frac{-2a}{-x^{18}}
Cancel out 2048x^{9}a^{14} in both numerator and denominator.
\frac{2a}{x^{18}}
Cancel out -1 in both numerator and denominator.