Evaluate
-\frac{7}{2}=-3.5
Factor
-\frac{7}{2} = -3\frac{1}{2} = -3.5
Share
Copied to clipboard
\frac{\left(-1\right)^{8}-\left(-3\times 2^{2}\right)+1^{2}}{\frac{36}{\left(-3\right)^{2}}-2^{3}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1-\left(-3\times 2^{2}\right)+1^{2}}{\frac{36}{\left(-3\right)^{2}}-2^{3}}
Calculate -1 to the power of 8 and get 1.
\frac{1-\left(-3\times 4\right)+1^{2}}{\frac{36}{\left(-3\right)^{2}}-2^{3}}
Calculate 2 to the power of 2 and get 4.
\frac{1-\left(-12\right)+1^{2}}{\frac{36}{\left(-3\right)^{2}}-2^{3}}
Multiply -3 and 4 to get -12.
\frac{1+12+1^{2}}{\frac{36}{\left(-3\right)^{2}}-2^{3}}
The opposite of -12 is 12.
\frac{13+1^{2}}{\frac{36}{\left(-3\right)^{2}}-2^{3}}
Add 1 and 12 to get 13.
\frac{13+1}{\frac{36}{\left(-3\right)^{2}}-2^{3}}
Calculate 1 to the power of 2 and get 1.
\frac{14}{\frac{36}{\left(-3\right)^{2}}-2^{3}}
Add 13 and 1 to get 14.
\frac{14}{\frac{36}{9}-2^{3}}
Calculate -3 to the power of 2 and get 9.
\frac{14}{4-2^{3}}
Divide 36 by 9 to get 4.
\frac{14}{4-8}
Calculate 2 to the power of 3 and get 8.
\frac{14}{-4}
Subtract 8 from 4 to get -4.
-\frac{7}{2}
Reduce the fraction \frac{14}{-4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}