Evaluate
-\frac{11}{15}\approx -0.733333333
Factor
-\frac{11}{15} = -0.7333333333333333
Share
Copied to clipboard
\frac{-1}{15}+\frac{\left(-\frac{2}{3}\right)^{2}}{\frac{2\times 3+2}{3}}-|-\frac{5}{6}|
Calculate -1 to the power of 3 and get -1.
-\frac{1}{15}+\frac{\left(-\frac{2}{3}\right)^{2}}{\frac{2\times 3+2}{3}}-|-\frac{5}{6}|
Fraction \frac{-1}{15} can be rewritten as -\frac{1}{15} by extracting the negative sign.
-\frac{1}{15}+\frac{\frac{4}{9}}{\frac{2\times 3+2}{3}}-|-\frac{5}{6}|
Calculate -\frac{2}{3} to the power of 2 and get \frac{4}{9}.
-\frac{1}{15}+\frac{\frac{4}{9}}{\frac{6+2}{3}}-|-\frac{5}{6}|
Multiply 2 and 3 to get 6.
-\frac{1}{15}+\frac{\frac{4}{9}}{\frac{8}{3}}-|-\frac{5}{6}|
Add 6 and 2 to get 8.
-\frac{1}{15}+\frac{4}{9}\times \frac{3}{8}-|-\frac{5}{6}|
Divide \frac{4}{9} by \frac{8}{3} by multiplying \frac{4}{9} by the reciprocal of \frac{8}{3}.
-\frac{1}{15}+\frac{4\times 3}{9\times 8}-|-\frac{5}{6}|
Multiply \frac{4}{9} times \frac{3}{8} by multiplying numerator times numerator and denominator times denominator.
-\frac{1}{15}+\frac{12}{72}-|-\frac{5}{6}|
Do the multiplications in the fraction \frac{4\times 3}{9\times 8}.
-\frac{1}{15}+\frac{1}{6}-|-\frac{5}{6}|
Reduce the fraction \frac{12}{72} to lowest terms by extracting and canceling out 12.
-\frac{2}{30}+\frac{5}{30}-|-\frac{5}{6}|
Least common multiple of 15 and 6 is 30. Convert -\frac{1}{15} and \frac{1}{6} to fractions with denominator 30.
\frac{-2+5}{30}-|-\frac{5}{6}|
Since -\frac{2}{30} and \frac{5}{30} have the same denominator, add them by adding their numerators.
\frac{3}{30}-|-\frac{5}{6}|
Add -2 and 5 to get 3.
\frac{1}{10}-|-\frac{5}{6}|
Reduce the fraction \frac{3}{30} to lowest terms by extracting and canceling out 3.
\frac{1}{10}-\frac{5}{6}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{5}{6} is \frac{5}{6}.
\frac{3}{30}-\frac{25}{30}
Least common multiple of 10 and 6 is 30. Convert \frac{1}{10} and \frac{5}{6} to fractions with denominator 30.
\frac{3-25}{30}
Since \frac{3}{30} and \frac{25}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{-22}{30}
Subtract 25 from 3 to get -22.
-\frac{11}{15}
Reduce the fraction \frac{-22}{30} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}