Evaluate
\frac{837}{280}\approx 2.989285714
Factor
\frac{31 \cdot 3 ^ {3}}{5 \cdot 7 \cdot 2 ^ {3}} = 2\frac{277}{280} = 2.9892857142857143
Share
Copied to clipboard
\frac{-\frac{7}{18}\left(-\frac{9}{2}\right)+\frac{1}{6}\left(-1\right)^{2000}}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Convert decimal number -4.5 to fraction -\frac{45}{10}. Reduce the fraction -\frac{45}{10} to lowest terms by extracting and canceling out 5.
\frac{\frac{-7\left(-9\right)}{18\times 2}+\frac{1}{6}\left(-1\right)^{2000}}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Multiply -\frac{7}{18} times -\frac{9}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{63}{36}+\frac{1}{6}\left(-1\right)^{2000}}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Do the multiplications in the fraction \frac{-7\left(-9\right)}{18\times 2}.
\frac{\frac{7}{4}+\frac{1}{6}\left(-1\right)^{2000}}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Reduce the fraction \frac{63}{36} to lowest terms by extracting and canceling out 9.
\frac{\frac{7}{4}+\frac{1}{6}\times 1}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Calculate -1 to the power of 2000 and get 1.
\frac{\frac{7}{4}+\frac{1}{6}}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Multiply \frac{1}{6} and 1 to get \frac{1}{6}.
\frac{\frac{21}{12}+\frac{2}{12}}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Least common multiple of 4 and 6 is 12. Convert \frac{7}{4} and \frac{1}{6} to fractions with denominator 12.
\frac{\frac{21+2}{12}}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Since \frac{21}{12} and \frac{2}{12} have the same denominator, add them by adding their numerators.
\frac{\frac{23}{12}}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Add 21 and 2 to get 23.
\frac{\frac{23}{12}}{\left(-\frac{39+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Multiply 13 and 3 to get 39.
\frac{\frac{23}{12}}{-\frac{40}{3}\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Add 39 and 1 to get 40.
\frac{\frac{23}{12}}{-\frac{40}{3}\left(-1\right)-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Calculate -1 to the power of 1009 and get -1.
\frac{\frac{23}{12}}{\frac{40}{3}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Multiply -\frac{40}{3} and -1 to get \frac{40}{3}.
\frac{\frac{23}{12}}{\frac{40}{3}-\left(-\frac{12+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Multiply 3 and 4 to get 12.
\frac{\frac{23}{12}}{\frac{40}{3}-\left(-\frac{15}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Add 12 and 3 to get 15.
\frac{\frac{23}{12}}{\frac{40}{3}+\frac{15}{4}-\frac{5}{16}}+\frac{2\times 8+7}{8}
The opposite of -\frac{15}{4} is \frac{15}{4}.
\frac{\frac{23}{12}}{\frac{160}{12}+\frac{45}{12}-\frac{5}{16}}+\frac{2\times 8+7}{8}
Least common multiple of 3 and 4 is 12. Convert \frac{40}{3} and \frac{15}{4} to fractions with denominator 12.
\frac{\frac{23}{12}}{\frac{160+45}{12}-\frac{5}{16}}+\frac{2\times 8+7}{8}
Since \frac{160}{12} and \frac{45}{12} have the same denominator, add them by adding their numerators.
\frac{\frac{23}{12}}{\frac{205}{12}-\frac{5}{16}}+\frac{2\times 8+7}{8}
Add 160 and 45 to get 205.
\frac{\frac{23}{12}}{\frac{820}{48}-\frac{15}{48}}+\frac{2\times 8+7}{8}
Least common multiple of 12 and 16 is 48. Convert \frac{205}{12} and \frac{5}{16} to fractions with denominator 48.
\frac{\frac{23}{12}}{\frac{820-15}{48}}+\frac{2\times 8+7}{8}
Since \frac{820}{48} and \frac{15}{48} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{23}{12}}{\frac{805}{48}}+\frac{2\times 8+7}{8}
Subtract 15 from 820 to get 805.
\frac{23}{12}\times \frac{48}{805}+\frac{2\times 8+7}{8}
Divide \frac{23}{12} by \frac{805}{48} by multiplying \frac{23}{12} by the reciprocal of \frac{805}{48}.
\frac{23\times 48}{12\times 805}+\frac{2\times 8+7}{8}
Multiply \frac{23}{12} times \frac{48}{805} by multiplying numerator times numerator and denominator times denominator.
\frac{1104}{9660}+\frac{2\times 8+7}{8}
Do the multiplications in the fraction \frac{23\times 48}{12\times 805}.
\frac{4}{35}+\frac{2\times 8+7}{8}
Reduce the fraction \frac{1104}{9660} to lowest terms by extracting and canceling out 276.
\frac{4}{35}+\frac{16+7}{8}
Multiply 2 and 8 to get 16.
\frac{4}{35}+\frac{23}{8}
Add 16 and 7 to get 23.
\frac{32}{280}+\frac{805}{280}
Least common multiple of 35 and 8 is 280. Convert \frac{4}{35} and \frac{23}{8} to fractions with denominator 280.
\frac{32+805}{280}
Since \frac{32}{280} and \frac{805}{280} have the same denominator, add them by adding their numerators.
\frac{837}{280}
Add 32 and 805 to get 837.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}