Verify
false
Share
Copied to clipboard
2\left(-\frac{7}{10}\right)-35=60\left(-\frac{7}{10}\right)-4\times 2\times \frac{-17}{10}
Multiply both sides of the equation by 20, the least common multiple of 10,4,5.
\frac{2\left(-7\right)}{10}-35=60\left(-\frac{7}{10}\right)-4\times 2\times \frac{-17}{10}
Express 2\left(-\frac{7}{10}\right) as a single fraction.
\frac{-14}{10}-35=60\left(-\frac{7}{10}\right)-4\times 2\times \frac{-17}{10}
Multiply 2 and -7 to get -14.
-\frac{7}{5}-35=60\left(-\frac{7}{10}\right)-4\times 2\times \frac{-17}{10}
Reduce the fraction \frac{-14}{10} to lowest terms by extracting and canceling out 2.
-\frac{7}{5}-\frac{175}{5}=60\left(-\frac{7}{10}\right)-4\times 2\times \frac{-17}{10}
Convert 35 to fraction \frac{175}{5}.
\frac{-7-175}{5}=60\left(-\frac{7}{10}\right)-4\times 2\times \frac{-17}{10}
Since -\frac{7}{5} and \frac{175}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{182}{5}=60\left(-\frac{7}{10}\right)-4\times 2\times \frac{-17}{10}
Subtract 175 from -7 to get -182.
-\frac{182}{5}=\frac{60\left(-7\right)}{10}-4\times 2\times \frac{-17}{10}
Express 60\left(-\frac{7}{10}\right) as a single fraction.
-\frac{182}{5}=\frac{-420}{10}-4\times 2\times \frac{-17}{10}
Multiply 60 and -7 to get -420.
-\frac{182}{5}=-42-4\times 2\times \frac{-17}{10}
Divide -420 by 10 to get -42.
-\frac{182}{5}=-42-8\times \frac{-17}{10}
Multiply -4 and 2 to get -8.
-\frac{182}{5}=-42-8\left(-\frac{17}{10}\right)
Fraction \frac{-17}{10} can be rewritten as -\frac{17}{10} by extracting the negative sign.
-\frac{182}{5}=-42+\frac{-8\left(-17\right)}{10}
Express -8\left(-\frac{17}{10}\right) as a single fraction.
-\frac{182}{5}=-42+\frac{136}{10}
Multiply -8 and -17 to get 136.
-\frac{182}{5}=-42+\frac{68}{5}
Reduce the fraction \frac{136}{10} to lowest terms by extracting and canceling out 2.
-\frac{182}{5}=-\frac{210}{5}+\frac{68}{5}
Convert -42 to fraction -\frac{210}{5}.
-\frac{182}{5}=\frac{-210+68}{5}
Since -\frac{210}{5} and \frac{68}{5} have the same denominator, add them by adding their numerators.
-\frac{182}{5}=-\frac{142}{5}
Add -210 and 68 to get -142.
\text{false}
Compare -\frac{182}{5} and -\frac{142}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}