Evaluate
-\frac{5}{24}\approx -0.208333333
Factor
-\frac{5}{24} = -0.20833333333333334
Share
Copied to clipboard
\frac{-\frac{9}{12}+\frac{14}{12}}{\frac{4}{5}-\frac{2\times 5+4}{5}}
Least common multiple of 4 and 6 is 12. Convert -\frac{3}{4} and \frac{7}{6} to fractions with denominator 12.
\frac{\frac{-9+14}{12}}{\frac{4}{5}-\frac{2\times 5+4}{5}}
Since -\frac{9}{12} and \frac{14}{12} have the same denominator, add them by adding their numerators.
\frac{\frac{5}{12}}{\frac{4}{5}-\frac{2\times 5+4}{5}}
Add -9 and 14 to get 5.
\frac{\frac{5}{12}}{\frac{4}{5}-\frac{10+4}{5}}
Multiply 2 and 5 to get 10.
\frac{\frac{5}{12}}{\frac{4}{5}-\frac{14}{5}}
Add 10 and 4 to get 14.
\frac{\frac{5}{12}}{\frac{4-14}{5}}
Since \frac{4}{5} and \frac{14}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5}{12}}{\frac{-10}{5}}
Subtract 14 from 4 to get -10.
\frac{\frac{5}{12}}{-2}
Divide -10 by 5 to get -2.
\frac{5}{12\left(-2\right)}
Express \frac{\frac{5}{12}}{-2} as a single fraction.
\frac{5}{-24}
Multiply 12 and -2 to get -24.
-\frac{5}{24}
Fraction \frac{5}{-24} can be rewritten as -\frac{5}{24} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}