Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. b
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(b^{-6}\right)^{-1}}{b^{-3^{2}}\left(b^{-3}\right)^{2}b^{\left(-3\right)^{2}}}\left(\left(bb^{2}\left(b^{-12}\right)^{-2}\right)^{-1}\right)^{-4}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
\frac{b^{6}}{b^{-3^{2}}\left(b^{-3}\right)^{2}b^{\left(-3\right)^{2}}}\left(\left(bb^{2}\left(b^{-12}\right)^{-2}\right)^{-1}\right)^{-4}
To raise a power to another power, multiply the exponents. Multiply -6 and -1 to get 6.
\frac{b^{6}}{b^{-3^{2}}b^{-6}b^{\left(-3\right)^{2}}}\left(\left(bb^{2}\left(b^{-12}\right)^{-2}\right)^{-1}\right)^{-4}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
\frac{b^{6}}{b^{-3^{2}}b^{-6}b^{\left(-3\right)^{2}}}\left(\left(bb^{2}b^{24}\right)^{-1}\right)^{-4}
To raise a power to another power, multiply the exponents. Multiply -12 and -2 to get 24.
\frac{b^{6}}{b^{-3^{2}}b^{-6}b^{\left(-3\right)^{2}}}\left(\left(b^{3}b^{24}\right)^{-1}\right)^{-4}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{b^{6}}{b^{-3^{2}}b^{-6}b^{\left(-3\right)^{2}}}\left(\left(b^{27}\right)^{-1}\right)^{-4}
To multiply powers of the same base, add their exponents. Add 3 and 24 to get 27.
\frac{b^{6}}{b^{-3^{2}}b^{-6}b^{\left(-3\right)^{2}}}\left(b^{-27}\right)^{-4}
To raise a power to another power, multiply the exponents. Multiply 27 and -1 to get -27.
\frac{b^{6}}{b^{-3^{2}}b^{-6}b^{\left(-3\right)^{2}}}b^{108}
To raise a power to another power, multiply the exponents. Multiply -27 and -4 to get 108.
\frac{b^{12}}{b^{-3^{2}}b^{\left(-3\right)^{2}}}b^{108}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{b^{12}}{b^{-9}b^{\left(-3\right)^{2}}}b^{108}
Calculate 3 to the power of 2 and get 9.
\frac{b^{12}}{b^{-9}b^{9}}b^{108}
Calculate -3 to the power of 2 and get 9.
\frac{b^{12}}{1}b^{108}
Multiply b^{-9} and b^{9} to get 1.
b^{12}b^{108}
Anything divided by one gives itself.
b^{120}
To multiply powers of the same base, add their exponents. Add 12 and 108 to get 120.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\left(b^{-6}\right)^{-1}}{b^{-3^{2}}\left(b^{-3}\right)^{2}b^{\left(-3\right)^{2}}}\left(\left(bb^{2}\left(b^{-12}\right)^{-2}\right)^{-1}\right)^{-4})
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{b^{6}}{b^{-3^{2}}\left(b^{-3}\right)^{2}b^{\left(-3\right)^{2}}}\left(\left(bb^{2}\left(b^{-12}\right)^{-2}\right)^{-1}\right)^{-4})
To raise a power to another power, multiply the exponents. Multiply -6 and -1 to get 6.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{b^{6}}{b^{-3^{2}}b^{-6}b^{\left(-3\right)^{2}}}\left(\left(bb^{2}\left(b^{-12}\right)^{-2}\right)^{-1}\right)^{-4})
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{b^{6}}{b^{-3^{2}}b^{-6}b^{\left(-3\right)^{2}}}\left(\left(bb^{2}b^{24}\right)^{-1}\right)^{-4})
To raise a power to another power, multiply the exponents. Multiply -12 and -2 to get 24.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{b^{6}}{b^{-3^{2}}b^{-6}b^{\left(-3\right)^{2}}}\left(\left(b^{3}b^{24}\right)^{-1}\right)^{-4})
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{b^{6}}{b^{-3^{2}}b^{-6}b^{\left(-3\right)^{2}}}\left(\left(b^{27}\right)^{-1}\right)^{-4})
To multiply powers of the same base, add their exponents. Add 3 and 24 to get 27.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{b^{6}}{b^{-3^{2}}b^{-6}b^{\left(-3\right)^{2}}}\left(b^{-27}\right)^{-4})
To raise a power to another power, multiply the exponents. Multiply 27 and -1 to get -27.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{b^{6}}{b^{-3^{2}}b^{-6}b^{\left(-3\right)^{2}}}b^{108})
To raise a power to another power, multiply the exponents. Multiply -27 and -4 to get 108.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{b^{12}}{b^{-3^{2}}b^{\left(-3\right)^{2}}}b^{108})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{b^{12}}{b^{-9}b^{\left(-3\right)^{2}}}b^{108})
Calculate 3 to the power of 2 and get 9.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{b^{12}}{b^{-9}b^{9}}b^{108})
Calculate -3 to the power of 2 and get 9.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{b^{12}}{1}b^{108})
Multiply b^{-9} and b^{9} to get 1.
\frac{\mathrm{d}}{\mathrm{d}b}(b^{12}b^{108})
Anything divided by one gives itself.
\frac{\mathrm{d}}{\mathrm{d}b}(b^{120})
To multiply powers of the same base, add their exponents. Add 12 and 108 to get 120.
120b^{120-1}
The derivative of ax^{n} is nax^{n-1}.
120b^{119}
Subtract 1 from 120.