\frac { ( ( 400 - x ) } { 1 } = \frac { ( 350 - x ) } { 0.8 }
Solve for x
x=150
Graph
Quiz
Linear Equation
5 problems similar to:
\frac { ( ( 400 - x ) } { 1 } = \frac { ( 350 - x ) } { 0.8 }
Share
Copied to clipboard
400-x=\frac{350-x}{0.8}
Anything divided by one gives itself.
400-x=\frac{350}{0.8}+\frac{-x}{0.8}
Divide each term of 350-x by 0.8 to get \frac{350}{0.8}+\frac{-x}{0.8}.
400-x=\frac{3500}{8}+\frac{-x}{0.8}
Expand \frac{350}{0.8} by multiplying both numerator and the denominator by 10.
400-x=\frac{875}{2}+\frac{-x}{0.8}
Reduce the fraction \frac{3500}{8} to lowest terms by extracting and canceling out 4.
400-x=\frac{875}{2}-1.25x
Divide -x by 0.8 to get -1.25x.
400-x+1.25x=\frac{875}{2}
Add 1.25x to both sides.
400+0.25x=\frac{875}{2}
Combine -x and 1.25x to get 0.25x.
0.25x=\frac{875}{2}-400
Subtract 400 from both sides.
0.25x=\frac{875}{2}-\frac{800}{2}
Convert 400 to fraction \frac{800}{2}.
0.25x=\frac{875-800}{2}
Since \frac{875}{2} and \frac{800}{2} have the same denominator, subtract them by subtracting their numerators.
0.25x=\frac{75}{2}
Subtract 800 from 875 to get 75.
x=\frac{\frac{75}{2}}{0.25}
Divide both sides by 0.25.
x=\frac{75}{2\times 0.25}
Express \frac{\frac{75}{2}}{0.25} as a single fraction.
x=\frac{75}{0.5}
Multiply 2 and 0.25 to get 0.5.
x=\frac{750}{5}
Expand \frac{75}{0.5} by multiplying both numerator and the denominator by 10.
x=150
Divide 750 by 5 to get 150.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}