Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\left(\frac{36+7}{12}-\frac{2\times 18+11}{18}+\frac{2\times 24+1}{24}\right)\times \frac{1\times 31+5}{31}-\frac{3}{52}\left(\frac{3\times 2+1}{2}+\frac{5}{6}\right)\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Multiply 3 and 12 to get 36.
\frac{\left(\left(\frac{43}{12}-\frac{2\times 18+11}{18}+\frac{2\times 24+1}{24}\right)\times \frac{1\times 31+5}{31}-\frac{3}{52}\left(\frac{3\times 2+1}{2}+\frac{5}{6}\right)\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Add 36 and 7 to get 43.
\frac{\left(\left(\frac{43}{12}-\frac{36+11}{18}+\frac{2\times 24+1}{24}\right)\times \frac{1\times 31+5}{31}-\frac{3}{52}\left(\frac{3\times 2+1}{2}+\frac{5}{6}\right)\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Multiply 2 and 18 to get 36.
\frac{\left(\left(\frac{43}{12}-\frac{47}{18}+\frac{2\times 24+1}{24}\right)\times \frac{1\times 31+5}{31}-\frac{3}{52}\left(\frac{3\times 2+1}{2}+\frac{5}{6}\right)\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Add 36 and 11 to get 47.
\frac{\left(\left(\frac{129}{36}-\frac{94}{36}+\frac{2\times 24+1}{24}\right)\times \frac{1\times 31+5}{31}-\frac{3}{52}\left(\frac{3\times 2+1}{2}+\frac{5}{6}\right)\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Least common multiple of 12 and 18 is 36. Convert \frac{43}{12} and \frac{47}{18} to fractions with denominator 36.
\frac{\left(\left(\frac{129-94}{36}+\frac{2\times 24+1}{24}\right)\times \frac{1\times 31+5}{31}-\frac{3}{52}\left(\frac{3\times 2+1}{2}+\frac{5}{6}\right)\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Since \frac{129}{36} and \frac{94}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\left(\frac{35}{36}+\frac{2\times 24+1}{24}\right)\times \frac{1\times 31+5}{31}-\frac{3}{52}\left(\frac{3\times 2+1}{2}+\frac{5}{6}\right)\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Subtract 94 from 129 to get 35.
\frac{\left(\left(\frac{35}{36}+\frac{48+1}{24}\right)\times \frac{1\times 31+5}{31}-\frac{3}{52}\left(\frac{3\times 2+1}{2}+\frac{5}{6}\right)\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Multiply 2 and 24 to get 48.
\frac{\left(\left(\frac{35}{36}+\frac{49}{24}\right)\times \frac{1\times 31+5}{31}-\frac{3}{52}\left(\frac{3\times 2+1}{2}+\frac{5}{6}\right)\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Add 48 and 1 to get 49.
\frac{\left(\left(\frac{70}{72}+\frac{147}{72}\right)\times \frac{1\times 31+5}{31}-\frac{3}{52}\left(\frac{3\times 2+1}{2}+\frac{5}{6}\right)\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Least common multiple of 36 and 24 is 72. Convert \frac{35}{36} and \frac{49}{24} to fractions with denominator 72.
\frac{\left(\frac{70+147}{72}\times \frac{1\times 31+5}{31}-\frac{3}{52}\left(\frac{3\times 2+1}{2}+\frac{5}{6}\right)\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Since \frac{70}{72} and \frac{147}{72} have the same denominator, add them by adding their numerators.
\frac{\left(\frac{217}{72}\times \frac{1\times 31+5}{31}-\frac{3}{52}\left(\frac{3\times 2+1}{2}+\frac{5}{6}\right)\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Add 70 and 147 to get 217.
\frac{\left(\frac{217}{72}\times \frac{31+5}{31}-\frac{3}{52}\left(\frac{3\times 2+1}{2}+\frac{5}{6}\right)\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Multiply 1 and 31 to get 31.
\frac{\left(\frac{217}{72}\times \frac{36}{31}-\frac{3}{52}\left(\frac{3\times 2+1}{2}+\frac{5}{6}\right)\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Add 31 and 5 to get 36.
\frac{\left(\frac{217\times 36}{72\times 31}-\frac{3}{52}\left(\frac{3\times 2+1}{2}+\frac{5}{6}\right)\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Multiply \frac{217}{72} times \frac{36}{31} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(\frac{7812}{2232}-\frac{3}{52}\left(\frac{3\times 2+1}{2}+\frac{5}{6}\right)\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Do the multiplications in the fraction \frac{217\times 36}{72\times 31}.
\frac{\left(\frac{7}{2}-\frac{3}{52}\left(\frac{3\times 2+1}{2}+\frac{5}{6}\right)\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Reduce the fraction \frac{7812}{2232} to lowest terms by extracting and canceling out 1116.
\frac{\left(\frac{7}{2}-\frac{3}{52}\left(\frac{6+1}{2}+\frac{5}{6}\right)\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Multiply 3 and 2 to get 6.
\frac{\left(\frac{7}{2}-\frac{3}{52}\left(\frac{7}{2}+\frac{5}{6}\right)\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Add 6 and 1 to get 7.
\frac{\left(\frac{7}{2}-\frac{3}{52}\left(\frac{21}{6}+\frac{5}{6}\right)\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Least common multiple of 2 and 6 is 6. Convert \frac{7}{2} and \frac{5}{6} to fractions with denominator 6.
\frac{\left(\frac{7}{2}-\frac{3}{52}\times \frac{21+5}{6}\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Since \frac{21}{6} and \frac{5}{6} have the same denominator, add them by adding their numerators.
\frac{\left(\frac{7}{2}-\frac{3}{52}\times \frac{26}{6}\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Add 21 and 5 to get 26.
\frac{\left(\frac{7}{2}-\frac{3}{52}\times \frac{13}{3}\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Reduce the fraction \frac{26}{6} to lowest terms by extracting and canceling out 2.
\frac{\left(\frac{7}{2}-\frac{3\times 13}{52\times 3}\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Multiply \frac{3}{52} times \frac{13}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(\frac{7}{2}-\frac{13}{52}\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Cancel out 3 in both numerator and denominator.
\frac{\left(\frac{7}{2}-\frac{1}{4}\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Reduce the fraction \frac{13}{52} to lowest terms by extracting and canceling out 13.
\frac{\left(\frac{14}{4}-\frac{1}{4}\right)\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Least common multiple of 2 and 4 is 4. Convert \frac{7}{2} and \frac{1}{4} to fractions with denominator 4.
\frac{\frac{14-1}{4}\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Since \frac{14}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{13}{4}\times \frac{1\times 13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Subtract 1 from 14 to get 13.
\frac{\frac{13}{4}\times \frac{13+7}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Multiply 1 and 13 to get 13.
\frac{\frac{13}{4}\times \frac{20}{13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Add 13 and 7 to get 20.
\frac{\frac{13\times 20}{4\times 13}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Multiply \frac{13}{4} times \frac{20}{13} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{20}{4}}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Cancel out 13 in both numerator and denominator.
\frac{5}{\frac{\frac{19}{84}}{\frac{5\times 42+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Divide 20 by 4 to get 5.
\frac{5}{\frac{\frac{19}{84}}{\frac{210+13}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Multiply 5 and 42 to get 210.
\frac{5}{\frac{\frac{19}{84}}{\frac{223}{42}-\frac{2\times 28+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Add 210 and 13 to get 223.
\frac{5}{\frac{\frac{19}{84}}{\frac{223}{42}-\frac{56+13}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Multiply 2 and 28 to get 56.
\frac{5}{\frac{\frac{19}{84}}{\frac{223}{42}-\frac{69}{28}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Add 56 and 13 to get 69.
\frac{5}{\frac{\frac{19}{84}}{\frac{446}{84}-\frac{207}{84}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Least common multiple of 42 and 28 is 84. Convert \frac{223}{42} and \frac{69}{28} to fractions with denominator 84.
\frac{5}{\frac{\frac{19}{84}}{\frac{446-207}{84}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Since \frac{446}{84} and \frac{207}{84} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{\frac{\frac{19}{84}}{\frac{239}{84}+\frac{5}{24}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Subtract 207 from 446 to get 239.
\frac{5}{\frac{\frac{19}{84}}{\frac{478}{168}+\frac{35}{168}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Least common multiple of 84 and 24 is 168. Convert \frac{239}{84} and \frac{5}{24} to fractions with denominator 168.
\frac{5}{\frac{\frac{19}{84}}{\frac{478+35}{168}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Since \frac{478}{168} and \frac{35}{168} have the same denominator, add them by adding their numerators.
\frac{5}{\frac{\frac{19}{84}}{\frac{513}{168}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Add 478 and 35 to get 513.
\frac{5}{\frac{\frac{19}{84}}{\frac{171}{56}}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Reduce the fraction \frac{513}{168} to lowest terms by extracting and canceling out 3.
\frac{5}{\frac{19}{84}\times \frac{56}{171}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Divide \frac{19}{84} by \frac{171}{56} by multiplying \frac{19}{84} by the reciprocal of \frac{171}{56}.
\frac{5}{\frac{19\times 56}{84\times 171}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Multiply \frac{19}{84} times \frac{56}{171} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{\frac{1064}{14364}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Do the multiplications in the fraction \frac{19\times 56}{84\times 171}.
\frac{5}{\frac{2}{27}+\frac{1\times 27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Reduce the fraction \frac{1064}{14364} to lowest terms by extracting and canceling out 532.
\frac{5}{\frac{2}{27}+\frac{27+2}{27}-\frac{1}{3}\times \frac{4}{9}}
Multiply 1 and 27 to get 27.
\frac{5}{\frac{2}{27}+\frac{29}{27}-\frac{1}{3}\times \frac{4}{9}}
Add 27 and 2 to get 29.
\frac{5}{\frac{2+29}{27}-\frac{1}{3}\times \frac{4}{9}}
Since \frac{2}{27} and \frac{29}{27} have the same denominator, add them by adding their numerators.
\frac{5}{\frac{31}{27}-\frac{1}{3}\times \frac{4}{9}}
Add 2 and 29 to get 31.
\frac{5}{\frac{31}{27}-\frac{1\times 4}{3\times 9}}
Multiply \frac{1}{3} times \frac{4}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{\frac{31}{27}-\frac{4}{27}}
Do the multiplications in the fraction \frac{1\times 4}{3\times 9}.
\frac{5}{\frac{31-4}{27}}
Since \frac{31}{27} and \frac{4}{27} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{\frac{27}{27}}
Subtract 4 from 31 to get 27.
\frac{5}{1}
Divide 27 by 27 to get 1.
5
Anything divided by one gives itself.