Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{8}\right)^{2}-\left(\sqrt{6}\right)^{2}}{3-\sqrt{7}}
Consider \left(\sqrt{8}+\sqrt{6}\right)\left(\sqrt{8}-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{8-\left(\sqrt{6}\right)^{2}}{3-\sqrt{7}}
The square of \sqrt{8} is 8.
\frac{8-6}{3-\sqrt{7}}
The square of \sqrt{6} is 6.
\frac{2}{3-\sqrt{7}}
Subtract 6 from 8 to get 2.
\frac{2\left(3+\sqrt{7}\right)}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}
Rationalize the denominator of \frac{2}{3-\sqrt{7}} by multiplying numerator and denominator by 3+\sqrt{7}.
\frac{2\left(3+\sqrt{7}\right)}{3^{2}-\left(\sqrt{7}\right)^{2}}
Consider \left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(3+\sqrt{7}\right)}{9-7}
Square 3. Square \sqrt{7}.
\frac{2\left(3+\sqrt{7}\right)}{2}
Subtract 7 from 9 to get 2.
3+\sqrt{7}
Cancel out 2 and 2.