Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{7-\left(\sqrt{3}\right)^{2}}{4\left(\sqrt{7}+\sqrt{3}\right)}
The square of \sqrt{7} is 7.
\frac{7-3}{4\left(\sqrt{7}+\sqrt{3}\right)}
The square of \sqrt{3} is 3.
\frac{4}{4\left(\sqrt{7}+\sqrt{3}\right)}
Subtract 3 from 7 to get 4.
\frac{4}{4\sqrt{7}+4\sqrt{3}}
Use the distributive property to multiply 4 by \sqrt{7}+\sqrt{3}.
\frac{4\left(4\sqrt{7}-4\sqrt{3}\right)}{\left(4\sqrt{7}+4\sqrt{3}\right)\left(4\sqrt{7}-4\sqrt{3}\right)}
Rationalize the denominator of \frac{4}{4\sqrt{7}+4\sqrt{3}} by multiplying numerator and denominator by 4\sqrt{7}-4\sqrt{3}.
\frac{4\left(4\sqrt{7}-4\sqrt{3}\right)}{\left(4\sqrt{7}\right)^{2}-\left(4\sqrt{3}\right)^{2}}
Consider \left(4\sqrt{7}+4\sqrt{3}\right)\left(4\sqrt{7}-4\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(4\sqrt{7}-4\sqrt{3}\right)}{4^{2}\left(\sqrt{7}\right)^{2}-\left(4\sqrt{3}\right)^{2}}
Expand \left(4\sqrt{7}\right)^{2}.
\frac{4\left(4\sqrt{7}-4\sqrt{3}\right)}{16\left(\sqrt{7}\right)^{2}-\left(4\sqrt{3}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{4\left(4\sqrt{7}-4\sqrt{3}\right)}{16\times 7-\left(4\sqrt{3}\right)^{2}}
The square of \sqrt{7} is 7.
\frac{4\left(4\sqrt{7}-4\sqrt{3}\right)}{112-\left(4\sqrt{3}\right)^{2}}
Multiply 16 and 7 to get 112.
\frac{4\left(4\sqrt{7}-4\sqrt{3}\right)}{112-4^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(4\sqrt{3}\right)^{2}.
\frac{4\left(4\sqrt{7}-4\sqrt{3}\right)}{112-16\left(\sqrt{3}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{4\left(4\sqrt{7}-4\sqrt{3}\right)}{112-16\times 3}
The square of \sqrt{3} is 3.
\frac{4\left(4\sqrt{7}-4\sqrt{3}\right)}{112-48}
Multiply 16 and 3 to get 48.
\frac{4\left(4\sqrt{7}-4\sqrt{3}\right)}{64}
Subtract 48 from 112 to get 64.
\frac{1}{16}\left(4\sqrt{7}-4\sqrt{3}\right)
Divide 4\left(4\sqrt{7}-4\sqrt{3}\right) by 64 to get \frac{1}{16}\left(4\sqrt{7}-4\sqrt{3}\right).
\frac{1}{4}\sqrt{7}-\frac{1}{4}\sqrt{3}
Use the distributive property to multiply \frac{1}{16} by 4\sqrt{7}-4\sqrt{3}.