Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{7}\right)^{2}+2\sqrt{7}+1}{\sqrt{7}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{7}+1\right)^{2}.
\frac{7+2\sqrt{7}+1}{\sqrt{7}}
The square of \sqrt{7} is 7.
\frac{8+2\sqrt{7}}{\sqrt{7}}
Add 7 and 1 to get 8.
\frac{\left(8+2\sqrt{7}\right)\sqrt{7}}{\left(\sqrt{7}\right)^{2}}
Rationalize the denominator of \frac{8+2\sqrt{7}}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{\left(8+2\sqrt{7}\right)\sqrt{7}}{7}
The square of \sqrt{7} is 7.
\frac{8\sqrt{7}+2\left(\sqrt{7}\right)^{2}}{7}
Use the distributive property to multiply 8+2\sqrt{7} by \sqrt{7}.
\frac{8\sqrt{7}+2\times 7}{7}
The square of \sqrt{7} is 7.
\frac{8\sqrt{7}+14}{7}
Multiply 2 and 7 to get 14.