Evaluate
\frac{8\sqrt{7}}{7}+2\approx 5.023715784
Share
Copied to clipboard
\frac{\left(\sqrt{7}\right)^{2}+2\sqrt{7}+1}{\sqrt{7}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{7}+1\right)^{2}.
\frac{7+2\sqrt{7}+1}{\sqrt{7}}
The square of \sqrt{7} is 7.
\frac{8+2\sqrt{7}}{\sqrt{7}}
Add 7 and 1 to get 8.
\frac{\left(8+2\sqrt{7}\right)\sqrt{7}}{\left(\sqrt{7}\right)^{2}}
Rationalize the denominator of \frac{8+2\sqrt{7}}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{\left(8+2\sqrt{7}\right)\sqrt{7}}{7}
The square of \sqrt{7} is 7.
\frac{8\sqrt{7}+2\left(\sqrt{7}\right)^{2}}{7}
Use the distributive property to multiply 8+2\sqrt{7} by \sqrt{7}.
\frac{8\sqrt{7}+2\times 7}{7}
The square of \sqrt{7} is 7.
\frac{8\sqrt{7}+14}{7}
Multiply 2 and 7 to get 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}