Evaluate
\frac{\sqrt{2}+1}{2}\approx 1.207106781
Factor
\frac{\sqrt{2} + 1}{2} = 1.2071067811865475
Share
Copied to clipboard
\frac{\left(\sqrt{6}-\sqrt{3}\right)\left(\sqrt{2}+1\right)}{2\sqrt{3}}-\left(-\frac{\sqrt{2}}{2}\right)
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{\left(\sqrt{6}-\sqrt{3}\right)\left(\sqrt{2}+1\right)\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}-\left(-\frac{\sqrt{2}}{2}\right)
Rationalize the denominator of \frac{\left(\sqrt{6}-\sqrt{3}\right)\left(\sqrt{2}+1\right)}{2\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(\sqrt{6}-\sqrt{3}\right)\left(\sqrt{2}+1\right)\sqrt{3}}{2\times 3}-\left(-\frac{\sqrt{2}}{2}\right)
The square of \sqrt{3} is 3.
\frac{\left(\sqrt{6}-\sqrt{3}\right)\left(\sqrt{2}+1\right)\sqrt{3}}{6}-\left(-\frac{\sqrt{2}}{2}\right)
Multiply 2 and 3 to get 6.
\frac{\left(\sqrt{6}\sqrt{2}+\sqrt{6}-\sqrt{3}\sqrt{2}-\sqrt{3}\right)\sqrt{3}}{6}-\left(-\frac{\sqrt{2}}{2}\right)
Apply the distributive property by multiplying each term of \sqrt{6}-\sqrt{3} by each term of \sqrt{2}+1.
\frac{\left(\sqrt{2}\sqrt{3}\sqrt{2}+\sqrt{6}-\sqrt{3}\sqrt{2}-\sqrt{3}\right)\sqrt{3}}{6}-\left(-\frac{\sqrt{2}}{2}\right)
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{\left(2\sqrt{3}+\sqrt{6}-\sqrt{3}\sqrt{2}-\sqrt{3}\right)\sqrt{3}}{6}-\left(-\frac{\sqrt{2}}{2}\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{\left(2\sqrt{3}+\sqrt{6}-\sqrt{6}-\sqrt{3}\right)\sqrt{3}}{6}-\left(-\frac{\sqrt{2}}{2}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{\left(2\sqrt{3}-\sqrt{3}\right)\sqrt{3}}{6}-\left(-\frac{\sqrt{2}}{2}\right)
Combine \sqrt{6} and -\sqrt{6} to get 0.
\frac{\sqrt{3}\sqrt{3}}{6}-\left(-\frac{\sqrt{2}}{2}\right)
Combine 2\sqrt{3} and -\sqrt{3} to get \sqrt{3}.
\frac{3}{6}-\left(-\frac{\sqrt{2}}{2}\right)
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{1}{2}-\left(-\frac{\sqrt{2}}{2}\right)
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{1}{2}+\frac{\sqrt{2}}{2}
Multiply -1 and -1 to get 1.
\frac{1+\sqrt{2}}{2}
Since \frac{1}{2} and \frac{\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}