Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. B
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{6}+\sqrt{150}\right)\sqrt{3}}{12B\sqrt{5}}
To multiply \sqrt{10} and \sqrt{15}, multiply the numbers under the square root.
\frac{\left(\sqrt{6}+\sqrt{150}\right)\sqrt{3}\sqrt{5}}{12B\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\left(\sqrt{6}+\sqrt{150}\right)\sqrt{3}}{12B\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\left(\sqrt{6}+\sqrt{150}\right)\sqrt{3}\sqrt{5}}{12B\times 5}
The square of \sqrt{5} is 5.
\frac{\left(\sqrt{6}+5\sqrt{6}\right)\sqrt{3}\sqrt{5}}{12B\times 5}
Factor 150=5^{2}\times 6. Rewrite the square root of the product \sqrt{5^{2}\times 6} as the product of square roots \sqrt{5^{2}}\sqrt{6}. Take the square root of 5^{2}.
\frac{6\sqrt{6}\sqrt{3}\sqrt{5}}{12B\times 5}
Combine \sqrt{6} and 5\sqrt{6} to get 6\sqrt{6}.
\frac{6\sqrt{3}\sqrt{2}\sqrt{3}\sqrt{5}}{12B\times 5}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{6\times 3\sqrt{2}\sqrt{5}}{12B\times 5}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{18\sqrt{2}\sqrt{5}}{12B\times 5}
Multiply 6 and 3 to get 18.
\frac{18\sqrt{10}}{12B\times 5}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{18\sqrt{10}}{60B}
Multiply 12 and 5 to get 60.
\frac{3\sqrt{10}}{10B}
Cancel out 6 in both numerator and denominator.