Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{5}-3\right)\left(\sqrt{5}-3\right)}{\left(\sqrt{5}\right)^{2}-3^{2}}
Consider \left(\sqrt{5}+3\right)\left(\sqrt{5}-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}-3\right)\left(\sqrt{5}-3\right)}{5-9}
Square \sqrt{5}. Square 3.
\frac{\left(\sqrt{5}-3\right)\left(\sqrt{5}-3\right)}{-4}
Subtract 9 from 5 to get -4.
\frac{\left(\sqrt{5}-3\right)^{2}}{-4}
Multiply \sqrt{5}-3 and \sqrt{5}-3 to get \left(\sqrt{5}-3\right)^{2}.
\frac{\left(\sqrt{5}\right)^{2}-6\sqrt{5}+9}{-4}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-3\right)^{2}.
\frac{5-6\sqrt{5}+9}{-4}
The square of \sqrt{5} is 5.
\frac{14-6\sqrt{5}}{-4}
Add 5 and 9 to get 14.