Evaluate
\frac{47\sqrt{5}-56\sqrt{2}}{37}\approx 0.699979336
Share
Copied to clipboard
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{\left(3\sqrt{5}+2\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}
Rationalize the denominator of \frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)}{3\sqrt{5}+2\sqrt{2}} by multiplying numerator and denominator by 3\sqrt{5}-2\sqrt{2}.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{\left(3\sqrt{5}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Consider \left(3\sqrt{5}+2\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{3^{2}\left(\sqrt{5}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Expand \left(3\sqrt{5}\right)^{2}.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{9\left(\sqrt{5}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{9\times 5-\left(2\sqrt{2}\right)^{2}}
The square of \sqrt{5} is 5.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-\left(2\sqrt{2}\right)^{2}}
Multiply 9 and 5 to get 45.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-2^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(2\sqrt{2}\right)^{2}.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-4\left(\sqrt{2}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-4\times 2}
The square of \sqrt{2} is 2.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-8}
Multiply 4 and 2 to get 8.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Subtract 8 from 45 to get 37.
\frac{\left(3\left(\sqrt{5}\right)^{2}+\sqrt{5}\sqrt{2}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Apply the distributive property by multiplying each term of \sqrt{5}-\sqrt{2} by each term of 3\sqrt{5}+\sqrt{2}.
\frac{\left(3\times 5+\sqrt{5}\sqrt{2}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
The square of \sqrt{5} is 5.
\frac{\left(15+\sqrt{5}\sqrt{2}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Multiply 3 and 5 to get 15.
\frac{\left(15+\sqrt{10}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{\left(15+\sqrt{10}-3\sqrt{10}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{\left(15-2\sqrt{10}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Combine \sqrt{10} and -3\sqrt{10} to get -2\sqrt{10}.
\frac{\left(15-2\sqrt{10}-2\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
The square of \sqrt{2} is 2.
\frac{\left(13-2\sqrt{10}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Subtract 2 from 15 to get 13.
\frac{39\sqrt{5}-26\sqrt{2}-6\sqrt{10}\sqrt{5}+4\sqrt{2}\sqrt{10}}{37}
Apply the distributive property by multiplying each term of 13-2\sqrt{10} by each term of 3\sqrt{5}-2\sqrt{2}.
\frac{39\sqrt{5}-26\sqrt{2}-6\sqrt{5}\sqrt{2}\sqrt{5}+4\sqrt{2}\sqrt{10}}{37}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
\frac{39\sqrt{5}-26\sqrt{2}-6\times 5\sqrt{2}+4\sqrt{2}\sqrt{10}}{37}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{39\sqrt{5}-26\sqrt{2}-30\sqrt{2}+4\sqrt{2}\sqrt{10}}{37}
Multiply -6 and 5 to get -30.
\frac{39\sqrt{5}-56\sqrt{2}+4\sqrt{2}\sqrt{10}}{37}
Combine -26\sqrt{2} and -30\sqrt{2} to get -56\sqrt{2}.
\frac{39\sqrt{5}-56\sqrt{2}+4\sqrt{2}\sqrt{2}\sqrt{5}}{37}
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
\frac{39\sqrt{5}-56\sqrt{2}+4\times 2\sqrt{5}}{37}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{39\sqrt{5}-56\sqrt{2}+8\sqrt{5}}{37}
Multiply 4 and 2 to get 8.
\frac{47\sqrt{5}-56\sqrt{2}}{37}
Combine 39\sqrt{5} and 8\sqrt{5} to get 47\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}