Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}
Rationalize the denominator of \frac{\sqrt{3}+1}{\sqrt{3}-2} by multiplying numerator and denominator by \sqrt{3}+2.
\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}\right)^{2}-2^{2}}
Consider \left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+2\right)}{3-4}
Square \sqrt{3}. Square 2.
\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+2\right)}{-1}
Subtract 4 from 3 to get -1.
-\left(\sqrt{3}+1\right)\left(\sqrt{3}+2\right)
Anything divided by -1 gives its opposite.
-\left(\left(\sqrt{3}\right)^{2}+2\sqrt{3}+\sqrt{3}+2\right)
Apply the distributive property by multiplying each term of \sqrt{3}+1 by each term of \sqrt{3}+2.
-\left(3+2\sqrt{3}+\sqrt{3}+2\right)
The square of \sqrt{3} is 3.
-\left(3+3\sqrt{3}+2\right)
Combine 2\sqrt{3} and \sqrt{3} to get 3\sqrt{3}.
-\left(5+3\sqrt{3}\right)
Add 3 and 2 to get 5.
-5-3\sqrt{3}
To find the opposite of 5+3\sqrt{3}, find the opposite of each term.