Evaluate
\frac{2\left(\sqrt{5}+2\sqrt{2}\right)}{3}\approx 3.376330068
Share
Copied to clipboard
\frac{\left(\sqrt{3}\right)^{2}-\left(\sqrt{7}\right)^{2}}{2\sqrt{5}-4\sqrt{2}}
Consider \left(\sqrt{3}+\sqrt{7}\right)\left(\sqrt{3}-\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3-\left(\sqrt{7}\right)^{2}}{2\sqrt{5}-4\sqrt{2}}
The square of \sqrt{3} is 3.
\frac{3-7}{2\sqrt{5}-4\sqrt{2}}
The square of \sqrt{7} is 7.
\frac{-4}{2\sqrt{5}-4\sqrt{2}}
Subtract 7 from 3 to get -4.
\frac{-4\left(2\sqrt{5}+4\sqrt{2}\right)}{\left(2\sqrt{5}-4\sqrt{2}\right)\left(2\sqrt{5}+4\sqrt{2}\right)}
Rationalize the denominator of \frac{-4}{2\sqrt{5}-4\sqrt{2}} by multiplying numerator and denominator by 2\sqrt{5}+4\sqrt{2}.
\frac{-4\left(2\sqrt{5}+4\sqrt{2}\right)}{\left(2\sqrt{5}\right)^{2}-\left(-4\sqrt{2}\right)^{2}}
Consider \left(2\sqrt{5}-4\sqrt{2}\right)\left(2\sqrt{5}+4\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-4\left(2\sqrt{5}+4\sqrt{2}\right)}{2^{2}\left(\sqrt{5}\right)^{2}-\left(-4\sqrt{2}\right)^{2}}
Expand \left(2\sqrt{5}\right)^{2}.
\frac{-4\left(2\sqrt{5}+4\sqrt{2}\right)}{4\left(\sqrt{5}\right)^{2}-\left(-4\sqrt{2}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{-4\left(2\sqrt{5}+4\sqrt{2}\right)}{4\times 5-\left(-4\sqrt{2}\right)^{2}}
The square of \sqrt{5} is 5.
\frac{-4\left(2\sqrt{5}+4\sqrt{2}\right)}{20-\left(-4\sqrt{2}\right)^{2}}
Multiply 4 and 5 to get 20.
\frac{-4\left(2\sqrt{5}+4\sqrt{2}\right)}{20-\left(-4\right)^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(-4\sqrt{2}\right)^{2}.
\frac{-4\left(2\sqrt{5}+4\sqrt{2}\right)}{20-16\left(\sqrt{2}\right)^{2}}
Calculate -4 to the power of 2 and get 16.
\frac{-4\left(2\sqrt{5}+4\sqrt{2}\right)}{20-16\times 2}
The square of \sqrt{2} is 2.
\frac{-4\left(2\sqrt{5}+4\sqrt{2}\right)}{20-32}
Multiply 16 and 2 to get 32.
\frac{-4\left(2\sqrt{5}+4\sqrt{2}\right)}{-12}
Subtract 32 from 20 to get -12.
\frac{1}{3}\left(2\sqrt{5}+4\sqrt{2}\right)
Divide -4\left(2\sqrt{5}+4\sqrt{2}\right) by -12 to get \frac{1}{3}\left(2\sqrt{5}+4\sqrt{2}\right).
\frac{1}{3}\times 2\sqrt{5}+\frac{1}{3}\times 4\sqrt{2}
Use the distributive property to multiply \frac{1}{3} by 2\sqrt{5}+4\sqrt{2}.
\frac{2}{3}\sqrt{5}+\frac{1}{3}\times 4\sqrt{2}
Multiply \frac{1}{3} and 2 to get \frac{2}{3}.
\frac{2}{3}\sqrt{5}+\frac{4}{3}\sqrt{2}
Multiply \frac{1}{3} and 4 to get \frac{4}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}