Evaluate
\frac{3\sqrt{2}}{4}-1\approx 0.060660172
Factor
\frac{3 \sqrt{2} - 4}{4} = 0.060660171779821415
Share
Copied to clipboard
\frac{\frac{\left(\sqrt{2}-1\right)\left(2-\sqrt{2}\right)}{2}}{2}
Express \left(\sqrt{2}-1\right)\times \frac{2-\sqrt{2}}{2} as a single fraction.
\frac{\left(\sqrt{2}-1\right)\left(2-\sqrt{2}\right)}{2\times 2}
Express \frac{\frac{\left(\sqrt{2}-1\right)\left(2-\sqrt{2}\right)}{2}}{2} as a single fraction.
\frac{\left(\sqrt{2}-1\right)\left(2-\sqrt{2}\right)}{4}
Multiply 2 and 2 to get 4.
\frac{2\sqrt{2}-\left(\sqrt{2}\right)^{2}-2+\sqrt{2}}{4}
Apply the distributive property by multiplying each term of \sqrt{2}-1 by each term of 2-\sqrt{2}.
\frac{2\sqrt{2}-2-2+\sqrt{2}}{4}
The square of \sqrt{2} is 2.
\frac{2\sqrt{2}-4+\sqrt{2}}{4}
Subtract 2 from -2 to get -4.
\frac{3\sqrt{2}-4}{4}
Combine 2\sqrt{2} and \sqrt{2} to get 3\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}