Evaluate
\frac{z}{y}
Expand
\frac{z}{y}
Share
Copied to clipboard
\frac{\frac{\left(y^{2}\right)^{-2}}{\left(z^{3}\right)^{-2}}\times \left(\frac{z^{2}}{y^{3}}\right)^{2}}{\left(y^{-3}z^{3}\right)^{3}}
To raise \frac{y^{2}}{z^{3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(y^{2}\right)^{-2}}{\left(z^{3}\right)^{-2}}\times \frac{\left(z^{2}\right)^{2}}{\left(y^{3}\right)^{2}}}{\left(y^{-3}z^{3}\right)^{3}}
To raise \frac{z^{2}}{y^{3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(y^{2}\right)^{-2}\left(z^{2}\right)^{2}}{\left(z^{3}\right)^{-2}\left(y^{3}\right)^{2}}}{\left(y^{-3}z^{3}\right)^{3}}
Multiply \frac{\left(y^{2}\right)^{-2}}{\left(z^{3}\right)^{-2}} times \frac{\left(z^{2}\right)^{2}}{\left(y^{3}\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(y^{2}\right)^{-2}\left(z^{2}\right)^{2}}{\left(z^{3}\right)^{-2}\left(y^{3}\right)^{2}}}{\left(y^{-3}\right)^{3}\left(z^{3}\right)^{3}}
Expand \left(y^{-3}z^{3}\right)^{3}.
\frac{\frac{\left(y^{2}\right)^{-2}\left(z^{2}\right)^{2}}{\left(z^{3}\right)^{-2}\left(y^{3}\right)^{2}}}{y^{-9}\left(z^{3}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply -3 and 3 to get -9.
\frac{\frac{\left(y^{2}\right)^{-2}\left(z^{2}\right)^{2}}{\left(z^{3}\right)^{-2}\left(y^{3}\right)^{2}}}{y^{-9}z^{9}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{\left(y^{2}\right)^{-2}\left(z^{2}\right)^{2}}{\left(z^{3}\right)^{-2}\left(y^{3}\right)^{2}y^{-9}z^{9}}
Express \frac{\frac{\left(y^{2}\right)^{-2}\left(z^{2}\right)^{2}}{\left(z^{3}\right)^{-2}\left(y^{3}\right)^{2}}}{y^{-9}z^{9}} as a single fraction.
\frac{y^{-4}\left(z^{2}\right)^{2}}{\left(z^{3}\right)^{-2}\left(y^{3}\right)^{2}y^{-9}z^{9}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{y^{-4}z^{4}}{\left(z^{3}\right)^{-2}\left(y^{3}\right)^{2}y^{-9}z^{9}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{y^{-4}z^{4}}{z^{-6}\left(y^{3}\right)^{2}y^{-9}z^{9}}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{y^{-4}z^{4}}{z^{-6}y^{6}y^{-9}z^{9}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{y^{-4}z^{4}}{z^{3}y^{6}y^{-9}}
To multiply powers of the same base, add their exponents. Add -6 and 9 to get 3.
\frac{y^{-4}z^{4}}{z^{3}y^{-3}}
To multiply powers of the same base, add their exponents. Add 6 and -9 to get -3.
\frac{y^{-4}z}{y^{-3}}
Cancel out z^{3} in both numerator and denominator.
\frac{z}{y^{1}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{z}{y}
Calculate y to the power of 1 and get y.
\frac{\frac{\left(y^{2}\right)^{-2}}{\left(z^{3}\right)^{-2}}\times \left(\frac{z^{2}}{y^{3}}\right)^{2}}{\left(y^{-3}z^{3}\right)^{3}}
To raise \frac{y^{2}}{z^{3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(y^{2}\right)^{-2}}{\left(z^{3}\right)^{-2}}\times \frac{\left(z^{2}\right)^{2}}{\left(y^{3}\right)^{2}}}{\left(y^{-3}z^{3}\right)^{3}}
To raise \frac{z^{2}}{y^{3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(y^{2}\right)^{-2}\left(z^{2}\right)^{2}}{\left(z^{3}\right)^{-2}\left(y^{3}\right)^{2}}}{\left(y^{-3}z^{3}\right)^{3}}
Multiply \frac{\left(y^{2}\right)^{-2}}{\left(z^{3}\right)^{-2}} times \frac{\left(z^{2}\right)^{2}}{\left(y^{3}\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(y^{2}\right)^{-2}\left(z^{2}\right)^{2}}{\left(z^{3}\right)^{-2}\left(y^{3}\right)^{2}}}{\left(y^{-3}\right)^{3}\left(z^{3}\right)^{3}}
Expand \left(y^{-3}z^{3}\right)^{3}.
\frac{\frac{\left(y^{2}\right)^{-2}\left(z^{2}\right)^{2}}{\left(z^{3}\right)^{-2}\left(y^{3}\right)^{2}}}{y^{-9}\left(z^{3}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply -3 and 3 to get -9.
\frac{\frac{\left(y^{2}\right)^{-2}\left(z^{2}\right)^{2}}{\left(z^{3}\right)^{-2}\left(y^{3}\right)^{2}}}{y^{-9}z^{9}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{\left(y^{2}\right)^{-2}\left(z^{2}\right)^{2}}{\left(z^{3}\right)^{-2}\left(y^{3}\right)^{2}y^{-9}z^{9}}
Express \frac{\frac{\left(y^{2}\right)^{-2}\left(z^{2}\right)^{2}}{\left(z^{3}\right)^{-2}\left(y^{3}\right)^{2}}}{y^{-9}z^{9}} as a single fraction.
\frac{y^{-4}\left(z^{2}\right)^{2}}{\left(z^{3}\right)^{-2}\left(y^{3}\right)^{2}y^{-9}z^{9}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{y^{-4}z^{4}}{\left(z^{3}\right)^{-2}\left(y^{3}\right)^{2}y^{-9}z^{9}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{y^{-4}z^{4}}{z^{-6}\left(y^{3}\right)^{2}y^{-9}z^{9}}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{y^{-4}z^{4}}{z^{-6}y^{6}y^{-9}z^{9}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{y^{-4}z^{4}}{z^{3}y^{6}y^{-9}}
To multiply powers of the same base, add their exponents. Add -6 and 9 to get 3.
\frac{y^{-4}z^{4}}{z^{3}y^{-3}}
To multiply powers of the same base, add their exponents. Add 6 and -9 to get -3.
\frac{y^{-4}z}{y^{-3}}
Cancel out z^{3} in both numerator and denominator.
\frac{z}{y^{1}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{z}{y}
Calculate y to the power of 1 and get y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}