Evaluate
\frac{\left(x-4\right)\left(x+h-1\right)}{h\left(x+8\right)}
Expand
\frac{x^{2}+hx-5x-4h+4}{h\left(x+8\right)}
Graph
Share
Copied to clipboard
\frac{\frac{\left(x-4\right)\left(x+h\right)}{x+8}-\frac{x-4}{x+8}}{h}
Express \frac{x-4}{x+8}\left(x+h\right) as a single fraction.
\frac{\frac{\left(x-4\right)\left(x+h\right)-\left(x-4\right)}{x+8}}{h}
Since \frac{\left(x-4\right)\left(x+h\right)}{x+8} and \frac{x-4}{x+8} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+xh-4x-4h-x+4}{x+8}}{h}
Do the multiplications in \left(x-4\right)\left(x+h\right)-\left(x-4\right).
\frac{\frac{x^{2}+xh-5x-4h+4}{x+8}}{h}
Combine like terms in x^{2}+xh-4x-4h-x+4.
\frac{x^{2}+xh-5x-4h+4}{\left(x+8\right)h}
Express \frac{\frac{x^{2}+xh-5x-4h+4}{x+8}}{h} as a single fraction.
\frac{x^{2}+xh-5x-4h+4}{xh+8h}
Use the distributive property to multiply x+8 by h.
\frac{\frac{\left(x-4\right)\left(x+h\right)}{x+8}-\frac{x-4}{x+8}}{h}
Express \frac{x-4}{x+8}\left(x+h\right) as a single fraction.
\frac{\frac{\left(x-4\right)\left(x+h\right)-\left(x-4\right)}{x+8}}{h}
Since \frac{\left(x-4\right)\left(x+h\right)}{x+8} and \frac{x-4}{x+8} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+xh-4x-4h-x+4}{x+8}}{h}
Do the multiplications in \left(x-4\right)\left(x+h\right)-\left(x-4\right).
\frac{\frac{x^{2}+xh-5x-4h+4}{x+8}}{h}
Combine like terms in x^{2}+xh-4x-4h-x+4.
\frac{x^{2}+xh-5x-4h+4}{\left(x+8\right)h}
Express \frac{\frac{x^{2}+xh-5x-4h+4}{x+8}}{h} as a single fraction.
\frac{x^{2}+xh-5x-4h+4}{xh+8h}
Use the distributive property to multiply x+8 by h.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}