Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{\left(x-4\right)\left(x+h\right)}{x+8}-\frac{x-4}{x+8}}{h}
Express \frac{x-4}{x+8}\left(x+h\right) as a single fraction.
\frac{\frac{\left(x-4\right)\left(x+h\right)-\left(x-4\right)}{x+8}}{h}
Since \frac{\left(x-4\right)\left(x+h\right)}{x+8} and \frac{x-4}{x+8} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+xh-4x-4h-x+4}{x+8}}{h}
Do the multiplications in \left(x-4\right)\left(x+h\right)-\left(x-4\right).
\frac{\frac{x^{2}+xh-5x-4h+4}{x+8}}{h}
Combine like terms in x^{2}+xh-4x-4h-x+4.
\frac{x^{2}+xh-5x-4h+4}{\left(x+8\right)h}
Express \frac{\frac{x^{2}+xh-5x-4h+4}{x+8}}{h} as a single fraction.
\frac{x^{2}+xh-5x-4h+4}{xh+8h}
Use the distributive property to multiply x+8 by h.
\frac{\frac{\left(x-4\right)\left(x+h\right)}{x+8}-\frac{x-4}{x+8}}{h}
Express \frac{x-4}{x+8}\left(x+h\right) as a single fraction.
\frac{\frac{\left(x-4\right)\left(x+h\right)-\left(x-4\right)}{x+8}}{h}
Since \frac{\left(x-4\right)\left(x+h\right)}{x+8} and \frac{x-4}{x+8} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+xh-4x-4h-x+4}{x+8}}{h}
Do the multiplications in \left(x-4\right)\left(x+h\right)-\left(x-4\right).
\frac{\frac{x^{2}+xh-5x-4h+4}{x+8}}{h}
Combine like terms in x^{2}+xh-4x-4h-x+4.
\frac{x^{2}+xh-5x-4h+4}{\left(x+8\right)h}
Express \frac{\frac{x^{2}+xh-5x-4h+4}{x+8}}{h} as a single fraction.
\frac{x^{2}+xh-5x-4h+4}{xh+8h}
Use the distributive property to multiply x+8 by h.