Evaluate
\frac{23p}{98q}
Expand
\frac{23p}{98q}
Share
Copied to clipboard
\frac{\frac{5pp}{2q\times 3}+\frac{p^{2}}{8q}}{4p+\frac{p}{12}}
Multiply \frac{5p}{2q} times \frac{p}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{4\times 5pp}{24q}+\frac{3p^{2}}{24q}}{4p+\frac{p}{12}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2q\times 3 and 8q is 24q. Multiply \frac{5pp}{2q\times 3} times \frac{4}{4}. Multiply \frac{p^{2}}{8q} times \frac{3}{3}.
\frac{\frac{4\times 5pp+3p^{2}}{24q}}{4p+\frac{p}{12}}
Since \frac{4\times 5pp}{24q} and \frac{3p^{2}}{24q} have the same denominator, add them by adding their numerators.
\frac{\frac{20p^{2}+3p^{2}}{24q}}{4p+\frac{p}{12}}
Do the multiplications in 4\times 5pp+3p^{2}.
\frac{\frac{23p^{2}}{24q}}{4p+\frac{p}{12}}
Combine like terms in 20p^{2}+3p^{2}.
\frac{\frac{23p^{2}}{24q}}{\frac{49}{12}p}
Combine 4p and \frac{p}{12} to get \frac{49}{12}p.
\frac{23p^{2}}{24q\times \frac{49}{12}p}
Express \frac{\frac{23p^{2}}{24q}}{\frac{49}{12}p} as a single fraction.
\frac{23p}{\frac{49}{12}\times 24q}
Cancel out p in both numerator and denominator.
\frac{23p}{98q}
Multiply \frac{49}{12} and 24 to get 98.
\frac{\frac{5pp}{2q\times 3}+\frac{p^{2}}{8q}}{4p+\frac{p}{12}}
Multiply \frac{5p}{2q} times \frac{p}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{4\times 5pp}{24q}+\frac{3p^{2}}{24q}}{4p+\frac{p}{12}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2q\times 3 and 8q is 24q. Multiply \frac{5pp}{2q\times 3} times \frac{4}{4}. Multiply \frac{p^{2}}{8q} times \frac{3}{3}.
\frac{\frac{4\times 5pp+3p^{2}}{24q}}{4p+\frac{p}{12}}
Since \frac{4\times 5pp}{24q} and \frac{3p^{2}}{24q} have the same denominator, add them by adding their numerators.
\frac{\frac{20p^{2}+3p^{2}}{24q}}{4p+\frac{p}{12}}
Do the multiplications in 4\times 5pp+3p^{2}.
\frac{\frac{23p^{2}}{24q}}{4p+\frac{p}{12}}
Combine like terms in 20p^{2}+3p^{2}.
\frac{\frac{23p^{2}}{24q}}{\frac{49}{12}p}
Combine 4p and \frac{p}{12} to get \frac{49}{12}p.
\frac{23p^{2}}{24q\times \frac{49}{12}p}
Express \frac{\frac{23p^{2}}{24q}}{\frac{49}{12}p} as a single fraction.
\frac{23p}{\frac{49}{12}\times 24q}
Cancel out p in both numerator and denominator.
\frac{23p}{98q}
Multiply \frac{49}{12} and 24 to get 98.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}