Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{\left(4x^{2}+x-14\right)\times 4x^{2}}{\left(6xy-14y\right)\left(x^{2}-4\right)}\times \frac{x-2}{4x-7}}{\frac{2x^{2}+4x}{3x^{2}-x-14}}
Multiply \frac{4x^{2}+x-14}{6xy-14y} times \frac{4x^{2}}{x^{2}-4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)}}{\frac{2x^{2}+4x}{3x^{2}-x-14}}
Multiply \frac{\left(4x^{2}+x-14\right)\times 4x^{2}}{\left(6xy-14y\right)\left(x^{2}-4\right)} times \frac{x-2}{4x-7} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)}}{\frac{2x\left(x+2\right)}{\left(3x-7\right)\left(x+2\right)}}
Factor the expressions that are not already factored in \frac{2x^{2}+4x}{3x^{2}-x-14}.
\frac{\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)}}{\frac{2x}{3x-7}}
Cancel out x+2 in both numerator and denominator.
\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)\left(3x-7\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)\times 2x}
Divide \frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)} by \frac{2x}{3x-7} by multiplying \frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)} by the reciprocal of \frac{2x}{3x-7}.
\frac{2x\left(x-2\right)\left(3x-7\right)\left(4x^{2}+x-14\right)}{\left(4x-7\right)\left(x^{2}-4\right)\left(6xy-14y\right)}
Cancel out 2x in both numerator and denominator.
\frac{2x\left(x-2\right)\left(3x-7\right)\left(4x-7\right)\left(x+2\right)}{2y\left(x-2\right)\left(3x-7\right)\left(4x-7\right)\left(x+2\right)}
Factor the expressions that are not already factored.
\frac{x}{y}
Cancel out 2\left(x-2\right)\left(3x-7\right)\left(4x-7\right)\left(x+2\right) in both numerator and denominator.
\frac{\frac{\left(4x^{2}+x-14\right)\times 4x^{2}}{\left(6xy-14y\right)\left(x^{2}-4\right)}\times \frac{x-2}{4x-7}}{\frac{2x^{2}+4x}{3x^{2}-x-14}}
Multiply \frac{4x^{2}+x-14}{6xy-14y} times \frac{4x^{2}}{x^{2}-4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)}}{\frac{2x^{2}+4x}{3x^{2}-x-14}}
Multiply \frac{\left(4x^{2}+x-14\right)\times 4x^{2}}{\left(6xy-14y\right)\left(x^{2}-4\right)} times \frac{x-2}{4x-7} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)}}{\frac{2x\left(x+2\right)}{\left(3x-7\right)\left(x+2\right)}}
Factor the expressions that are not already factored in \frac{2x^{2}+4x}{3x^{2}-x-14}.
\frac{\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)}}{\frac{2x}{3x-7}}
Cancel out x+2 in both numerator and denominator.
\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)\left(3x-7\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)\times 2x}
Divide \frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)} by \frac{2x}{3x-7} by multiplying \frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)} by the reciprocal of \frac{2x}{3x-7}.
\frac{2x\left(x-2\right)\left(3x-7\right)\left(4x^{2}+x-14\right)}{\left(4x-7\right)\left(x^{2}-4\right)\left(6xy-14y\right)}
Cancel out 2x in both numerator and denominator.
\frac{2x\left(x-2\right)\left(3x-7\right)\left(4x-7\right)\left(x+2\right)}{2y\left(x-2\right)\left(3x-7\right)\left(4x-7\right)\left(x+2\right)}
Factor the expressions that are not already factored.
\frac{x}{y}
Cancel out 2\left(x-2\right)\left(3x-7\right)\left(4x-7\right)\left(x+2\right) in both numerator and denominator.