Evaluate
-\frac{5}{186}\approx -0.02688172
Factor
-\frac{5}{186} = -0.026881720430107527
Share
Copied to clipboard
\frac{\left(\frac{8}{6}-\frac{7}{6}+1-\frac{17}{12}\right)\left(\frac{7}{4}-5+\frac{7}{2}-\frac{2}{6}\right)}{\frac{8}{5}-3+\frac{16}{25}\times \frac{125}{8}\times \frac{1}{12}\times \frac{3}{4}}
Least common multiple of 3 and 6 is 6. Convert \frac{4}{3} and \frac{7}{6} to fractions with denominator 6.
\frac{\left(\frac{8-7}{6}+1-\frac{17}{12}\right)\left(\frac{7}{4}-5+\frac{7}{2}-\frac{2}{6}\right)}{\frac{8}{5}-3+\frac{16}{25}\times \frac{125}{8}\times \frac{1}{12}\times \frac{3}{4}}
Since \frac{8}{6} and \frac{7}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\frac{1}{6}+1-\frac{17}{12}\right)\left(\frac{7}{4}-5+\frac{7}{2}-\frac{2}{6}\right)}{\frac{8}{5}-3+\frac{16}{25}\times \frac{125}{8}\times \frac{1}{12}\times \frac{3}{4}}
Subtract 7 from 8 to get 1.
\frac{\left(\frac{1}{6}+\frac{6}{6}-\frac{17}{12}\right)\left(\frac{7}{4}-5+\frac{7}{2}-\frac{2}{6}\right)}{\frac{8}{5}-3+\frac{16}{25}\times \frac{125}{8}\times \frac{1}{12}\times \frac{3}{4}}
Convert 1 to fraction \frac{6}{6}.
\frac{\left(\frac{1+6}{6}-\frac{17}{12}\right)\left(\frac{7}{4}-5+\frac{7}{2}-\frac{2}{6}\right)}{\frac{8}{5}-3+\frac{16}{25}\times \frac{125}{8}\times \frac{1}{12}\times \frac{3}{4}}
Since \frac{1}{6} and \frac{6}{6} have the same denominator, add them by adding their numerators.
\frac{\left(\frac{7}{6}-\frac{17}{12}\right)\left(\frac{7}{4}-5+\frac{7}{2}-\frac{2}{6}\right)}{\frac{8}{5}-3+\frac{16}{25}\times \frac{125}{8}\times \frac{1}{12}\times \frac{3}{4}}
Add 1 and 6 to get 7.
\frac{\left(\frac{14}{12}-\frac{17}{12}\right)\left(\frac{7}{4}-5+\frac{7}{2}-\frac{2}{6}\right)}{\frac{8}{5}-3+\frac{16}{25}\times \frac{125}{8}\times \frac{1}{12}\times \frac{3}{4}}
Least common multiple of 6 and 12 is 12. Convert \frac{7}{6} and \frac{17}{12} to fractions with denominator 12.
\frac{\frac{14-17}{12}\left(\frac{7}{4}-5+\frac{7}{2}-\frac{2}{6}\right)}{\frac{8}{5}-3+\frac{16}{25}\times \frac{125}{8}\times \frac{1}{12}\times \frac{3}{4}}
Since \frac{14}{12} and \frac{17}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-3}{12}\left(\frac{7}{4}-5+\frac{7}{2}-\frac{2}{6}\right)}{\frac{8}{5}-3+\frac{16}{25}\times \frac{125}{8}\times \frac{1}{12}\times \frac{3}{4}}
Subtract 17 from 14 to get -3.
\frac{-\frac{1}{4}\left(\frac{7}{4}-5+\frac{7}{2}-\frac{2}{6}\right)}{\frac{8}{5}-3+\frac{16}{25}\times \frac{125}{8}\times \frac{1}{12}\times \frac{3}{4}}
Reduce the fraction \frac{-3}{12} to lowest terms by extracting and canceling out 3.
\frac{-\frac{1}{4}\left(\frac{7}{4}-\frac{20}{4}+\frac{7}{2}-\frac{2}{6}\right)}{\frac{8}{5}-3+\frac{16}{25}\times \frac{125}{8}\times \frac{1}{12}\times \frac{3}{4}}
Convert 5 to fraction \frac{20}{4}.
\frac{-\frac{1}{4}\left(\frac{7-20}{4}+\frac{7}{2}-\frac{2}{6}\right)}{\frac{8}{5}-3+\frac{16}{25}\times \frac{125}{8}\times \frac{1}{12}\times \frac{3}{4}}
Since \frac{7}{4} and \frac{20}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{1}{4}\left(-\frac{13}{4}+\frac{7}{2}-\frac{2}{6}\right)}{\frac{8}{5}-3+\frac{16}{25}\times \frac{125}{8}\times \frac{1}{12}\times \frac{3}{4}}
Subtract 20 from 7 to get -13.
\frac{-\frac{1}{4}\left(-\frac{13}{4}+\frac{14}{4}-\frac{2}{6}\right)}{\frac{8}{5}-3+\frac{16}{25}\times \frac{125}{8}\times \frac{1}{12}\times \frac{3}{4}}
Least common multiple of 4 and 2 is 4. Convert -\frac{13}{4} and \frac{7}{2} to fractions with denominator 4.
\frac{-\frac{1}{4}\left(\frac{-13+14}{4}-\frac{2}{6}\right)}{\frac{8}{5}-3+\frac{16}{25}\times \frac{125}{8}\times \frac{1}{12}\times \frac{3}{4}}
Since -\frac{13}{4} and \frac{14}{4} have the same denominator, add them by adding their numerators.
\frac{-\frac{1}{4}\left(\frac{1}{4}-\frac{2}{6}\right)}{\frac{8}{5}-3+\frac{16}{25}\times \frac{125}{8}\times \frac{1}{12}\times \frac{3}{4}}
Add -13 and 14 to get 1.
\frac{-\frac{1}{4}\left(\frac{1}{4}-\frac{1}{3}\right)}{\frac{8}{5}-3+\frac{16}{25}\times \frac{125}{8}\times \frac{1}{12}\times \frac{3}{4}}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{-\frac{1}{4}\left(\frac{3}{12}-\frac{4}{12}\right)}{\frac{8}{5}-3+\frac{16}{25}\times \frac{125}{8}\times \frac{1}{12}\times \frac{3}{4}}
Least common multiple of 4 and 3 is 12. Convert \frac{1}{4} and \frac{1}{3} to fractions with denominator 12.
\frac{-\frac{1}{4}\times \frac{3-4}{12}}{\frac{8}{5}-3+\frac{16}{25}\times \frac{125}{8}\times \frac{1}{12}\times \frac{3}{4}}
Since \frac{3}{12} and \frac{4}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{1}{4}\left(-\frac{1}{12}\right)}{\frac{8}{5}-3+\frac{16}{25}\times \frac{125}{8}\times \frac{1}{12}\times \frac{3}{4}}
Subtract 4 from 3 to get -1.
\frac{\frac{-\left(-1\right)}{4\times 12}}{\frac{8}{5}-3+\frac{16}{25}\times \frac{125}{8}\times \frac{1}{12}\times \frac{3}{4}}
Multiply -\frac{1}{4} times -\frac{1}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{1}{48}}{\frac{8}{5}-3+\frac{16}{25}\times \frac{125}{8}\times \frac{1}{12}\times \frac{3}{4}}
Do the multiplications in the fraction \frac{-\left(-1\right)}{4\times 12}.
\frac{\frac{1}{48}}{\frac{8}{5}-\frac{15}{5}+\frac{16}{25}\times \frac{125}{8}\times \frac{1}{12}\times \frac{3}{4}}
Convert 3 to fraction \frac{15}{5}.
\frac{\frac{1}{48}}{\frac{8-15}{5}+\frac{16}{25}\times \frac{125}{8}\times \frac{1}{12}\times \frac{3}{4}}
Since \frac{8}{5} and \frac{15}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{48}}{-\frac{7}{5}+\frac{16}{25}\times \frac{125}{8}\times \frac{1}{12}\times \frac{3}{4}}
Subtract 15 from 8 to get -7.
\frac{\frac{1}{48}}{-\frac{7}{5}+\frac{16\times 125}{25\times 8}\times \frac{1}{12}\times \frac{3}{4}}
Multiply \frac{16}{25} times \frac{125}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{1}{48}}{-\frac{7}{5}+\frac{2000}{200}\times \frac{1}{12}\times \frac{3}{4}}
Do the multiplications in the fraction \frac{16\times 125}{25\times 8}.
\frac{\frac{1}{48}}{-\frac{7}{5}+10\times \frac{1}{12}\times \frac{3}{4}}
Divide 2000 by 200 to get 10.
\frac{\frac{1}{48}}{-\frac{7}{5}+\frac{10}{12}\times \frac{3}{4}}
Multiply 10 and \frac{1}{12} to get \frac{10}{12}.
\frac{\frac{1}{48}}{-\frac{7}{5}+\frac{5}{6}\times \frac{3}{4}}
Reduce the fraction \frac{10}{12} to lowest terms by extracting and canceling out 2.
\frac{\frac{1}{48}}{-\frac{7}{5}+\frac{5\times 3}{6\times 4}}
Multiply \frac{5}{6} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{1}{48}}{-\frac{7}{5}+\frac{15}{24}}
Do the multiplications in the fraction \frac{5\times 3}{6\times 4}.
\frac{\frac{1}{48}}{-\frac{7}{5}+\frac{5}{8}}
Reduce the fraction \frac{15}{24} to lowest terms by extracting and canceling out 3.
\frac{\frac{1}{48}}{-\frac{56}{40}+\frac{25}{40}}
Least common multiple of 5 and 8 is 40. Convert -\frac{7}{5} and \frac{5}{8} to fractions with denominator 40.
\frac{\frac{1}{48}}{\frac{-56+25}{40}}
Since -\frac{56}{40} and \frac{25}{40} have the same denominator, add them by adding their numerators.
\frac{\frac{1}{48}}{-\frac{31}{40}}
Add -56 and 25 to get -31.
\frac{1}{48}\left(-\frac{40}{31}\right)
Divide \frac{1}{48} by -\frac{31}{40} by multiplying \frac{1}{48} by the reciprocal of -\frac{31}{40}.
\frac{1\left(-40\right)}{48\times 31}
Multiply \frac{1}{48} times -\frac{40}{31} by multiplying numerator times numerator and denominator times denominator.
\frac{-40}{1488}
Do the multiplications in the fraction \frac{1\left(-40\right)}{48\times 31}.
-\frac{5}{186}
Reduce the fraction \frac{-40}{1488} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}