Evaluate
\frac{1}{81}\approx 0.012345679
Factor
\frac{1}{3 ^ {4}} = 0.012345679012345678
Share
Copied to clipboard
\frac{\left(\frac{3}{9}\right)^{10}\times \left(\frac{9}{3}\right)^{-2}}{\left(\frac{3}{9}\right)^{10}\times \left(\frac{9}{3}\right)^{4}\times \left(\frac{3}{9}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 4 and 6 to get 10.
\frac{\left(\frac{3}{9}\right)^{10}\times \left(\frac{9}{3}\right)^{-2}}{\left(\frac{3}{9}\right)^{12}\times \left(\frac{9}{3}\right)^{4}}
To multiply powers of the same base, add their exponents. Add 10 and 2 to get 12.
\frac{\left(\frac{1}{3}\right)^{10}\times \left(\frac{9}{3}\right)^{-2}}{\left(\frac{3}{9}\right)^{12}\times \left(\frac{9}{3}\right)^{4}}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{\frac{1}{59049}\times \left(\frac{9}{3}\right)^{-2}}{\left(\frac{3}{9}\right)^{12}\times \left(\frac{9}{3}\right)^{4}}
Calculate \frac{1}{3} to the power of 10 and get \frac{1}{59049}.
\frac{\frac{1}{59049}\times 3^{-2}}{\left(\frac{3}{9}\right)^{12}\times \left(\frac{9}{3}\right)^{4}}
Divide 9 by 3 to get 3.
\frac{\frac{1}{59049}\times \frac{1}{9}}{\left(\frac{3}{9}\right)^{12}\times \left(\frac{9}{3}\right)^{4}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{\frac{1}{531441}}{\left(\frac{3}{9}\right)^{12}\times \left(\frac{9}{3}\right)^{4}}
Multiply \frac{1}{59049} and \frac{1}{9} to get \frac{1}{531441}.
\frac{\frac{1}{531441}}{\left(\frac{1}{3}\right)^{12}\times \left(\frac{9}{3}\right)^{4}}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{\frac{1}{531441}}{\frac{1}{531441}\times \left(\frac{9}{3}\right)^{4}}
Calculate \frac{1}{3} to the power of 12 and get \frac{1}{531441}.
\frac{\frac{1}{531441}}{\frac{1}{531441}\times 3^{4}}
Divide 9 by 3 to get 3.
\frac{\frac{1}{531441}}{\frac{1}{531441}\times 81}
Calculate 3 to the power of 4 and get 81.
\frac{\frac{1}{531441}}{\frac{1}{6561}}
Multiply \frac{1}{531441} and 81 to get \frac{1}{6561}.
\frac{1}{531441}\times 6561
Divide \frac{1}{531441} by \frac{1}{6561} by multiplying \frac{1}{531441} by the reciprocal of \frac{1}{6561}.
\frac{1}{81}
Multiply \frac{1}{531441} and 6561 to get \frac{1}{81}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}