Evaluate
-\frac{\sqrt{36}}{3}=-2
Share
Copied to clipboard
\frac{\left(\frac{1}{3}\right)^{2}-\sqrt{\frac{16}{81}}}{\sqrt{\frac{1}{36}}}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{\frac{1}{9}-\sqrt{\frac{16}{81}}}{\sqrt{\frac{1}{36}}}
Calculate \frac{1}{3} to the power of 2 and get \frac{1}{9}.
\frac{\frac{1}{9}-\frac{4}{9}}{\sqrt{\frac{1}{36}}}
Rewrite the square root of the division \frac{16}{81} as the division of square roots \frac{\sqrt{16}}{\sqrt{81}}. Take the square root of both numerator and denominator.
\frac{-\frac{1}{3}}{\sqrt{\frac{1}{36}}}
Subtract \frac{4}{9} from \frac{1}{9} to get -\frac{1}{3}.
\frac{-\frac{1}{3}}{\frac{1}{6}}
Rewrite the square root of the division \frac{1}{36} as the division of square roots \frac{\sqrt{1}}{\sqrt{36}}. Take the square root of both numerator and denominator.
-\frac{1}{3}\times 6
Divide -\frac{1}{3} by \frac{1}{6} by multiplying -\frac{1}{3} by the reciprocal of \frac{1}{6}.
-2
Multiply -\frac{1}{3} and 6 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}