Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{3}{8}+\frac{2}{8}-\left(\frac{5}{2}+\frac{3}{6}\right)}{\frac{8}{7}\times \left(\frac{1}{4}\right)^{2}}
Least common multiple of 8 and 4 is 8. Convert \frac{3}{8} and \frac{1}{4} to fractions with denominator 8.
\frac{\frac{3+2}{8}-\left(\frac{5}{2}+\frac{3}{6}\right)}{\frac{8}{7}\times \left(\frac{1}{4}\right)^{2}}
Since \frac{3}{8} and \frac{2}{8} have the same denominator, add them by adding their numerators.
\frac{\frac{5}{8}-\left(\frac{5}{2}+\frac{3}{6}\right)}{\frac{8}{7}\times \left(\frac{1}{4}\right)^{2}}
Add 3 and 2 to get 5.
\frac{\frac{5}{8}-\left(\frac{5}{2}+\frac{1}{2}\right)}{\frac{8}{7}\times \left(\frac{1}{4}\right)^{2}}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{\frac{5}{8}-\frac{5+1}{2}}{\frac{8}{7}\times \left(\frac{1}{4}\right)^{2}}
Since \frac{5}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{5}{8}-\frac{6}{2}}{\frac{8}{7}\times \left(\frac{1}{4}\right)^{2}}
Add 5 and 1 to get 6.
\frac{\frac{5}{8}-3}{\frac{8}{7}\times \left(\frac{1}{4}\right)^{2}}
Divide 6 by 2 to get 3.
\frac{\frac{5}{8}-\frac{24}{8}}{\frac{8}{7}\times \left(\frac{1}{4}\right)^{2}}
Convert 3 to fraction \frac{24}{8}.
\frac{\frac{5-24}{8}}{\frac{8}{7}\times \left(\frac{1}{4}\right)^{2}}
Since \frac{5}{8} and \frac{24}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{19}{8}}{\frac{8}{7}\times \left(\frac{1}{4}\right)^{2}}
Subtract 24 from 5 to get -19.
\frac{-\frac{19}{8}}{\frac{8}{7}\times \frac{1}{16}}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{-\frac{19}{8}}{\frac{8\times 1}{7\times 16}}
Multiply \frac{8}{7} times \frac{1}{16} by multiplying numerator times numerator and denominator times denominator.
\frac{-\frac{19}{8}}{\frac{8}{112}}
Do the multiplications in the fraction \frac{8\times 1}{7\times 16}.
\frac{-\frac{19}{8}}{\frac{1}{14}}
Reduce the fraction \frac{8}{112} to lowest terms by extracting and canceling out 8.
-\frac{19}{8}\times 14
Divide -\frac{19}{8} by \frac{1}{14} by multiplying -\frac{19}{8} by the reciprocal of \frac{1}{14}.
\frac{-19\times 14}{8}
Express -\frac{19}{8}\times 14 as a single fraction.
\frac{-266}{8}
Multiply -19 and 14 to get -266.
-\frac{133}{4}
Reduce the fraction \frac{-266}{8} to lowest terms by extracting and canceling out 2.