Evaluate
-\frac{133}{4}=-33.25
Factor
-\frac{133}{4} = -33\frac{1}{4} = -33.25
Share
Copied to clipboard
\frac{\frac{3}{8}+\frac{2}{8}-\left(\frac{5}{2}+\frac{3}{6}\right)}{\frac{8}{7}\times \left(\frac{1}{4}\right)^{2}}
Least common multiple of 8 and 4 is 8. Convert \frac{3}{8} and \frac{1}{4} to fractions with denominator 8.
\frac{\frac{3+2}{8}-\left(\frac{5}{2}+\frac{3}{6}\right)}{\frac{8}{7}\times \left(\frac{1}{4}\right)^{2}}
Since \frac{3}{8} and \frac{2}{8} have the same denominator, add them by adding their numerators.
\frac{\frac{5}{8}-\left(\frac{5}{2}+\frac{3}{6}\right)}{\frac{8}{7}\times \left(\frac{1}{4}\right)^{2}}
Add 3 and 2 to get 5.
\frac{\frac{5}{8}-\left(\frac{5}{2}+\frac{1}{2}\right)}{\frac{8}{7}\times \left(\frac{1}{4}\right)^{2}}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{\frac{5}{8}-\frac{5+1}{2}}{\frac{8}{7}\times \left(\frac{1}{4}\right)^{2}}
Since \frac{5}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{5}{8}-\frac{6}{2}}{\frac{8}{7}\times \left(\frac{1}{4}\right)^{2}}
Add 5 and 1 to get 6.
\frac{\frac{5}{8}-3}{\frac{8}{7}\times \left(\frac{1}{4}\right)^{2}}
Divide 6 by 2 to get 3.
\frac{\frac{5}{8}-\frac{24}{8}}{\frac{8}{7}\times \left(\frac{1}{4}\right)^{2}}
Convert 3 to fraction \frac{24}{8}.
\frac{\frac{5-24}{8}}{\frac{8}{7}\times \left(\frac{1}{4}\right)^{2}}
Since \frac{5}{8} and \frac{24}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{19}{8}}{\frac{8}{7}\times \left(\frac{1}{4}\right)^{2}}
Subtract 24 from 5 to get -19.
\frac{-\frac{19}{8}}{\frac{8}{7}\times \frac{1}{16}}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{-\frac{19}{8}}{\frac{8\times 1}{7\times 16}}
Multiply \frac{8}{7} times \frac{1}{16} by multiplying numerator times numerator and denominator times denominator.
\frac{-\frac{19}{8}}{\frac{8}{112}}
Do the multiplications in the fraction \frac{8\times 1}{7\times 16}.
\frac{-\frac{19}{8}}{\frac{1}{14}}
Reduce the fraction \frac{8}{112} to lowest terms by extracting and canceling out 8.
-\frac{19}{8}\times 14
Divide -\frac{19}{8} by \frac{1}{14} by multiplying -\frac{19}{8} by the reciprocal of \frac{1}{14}.
\frac{-19\times 14}{8}
Express -\frac{19}{8}\times 14 as a single fraction.
\frac{-266}{8}
Multiply -19 and 14 to get -266.
-\frac{133}{4}
Reduce the fraction \frac{-266}{8} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}