Evaluate
\frac{46}{33}\approx 1.393939394
Factor
\frac{2 \cdot 23}{3 \cdot 11} = 1\frac{13}{33} = 1.393939393939394
Share
Copied to clipboard
\frac{\frac{\frac{3}{5}+\frac{1\times 2}{2\times 3}}{\frac{1}{5}+\frac{4}{2}}}{\left(1-\frac{5}{6}\right)\left(1+\frac{5}{6}\right)+\frac{1}{36}}\left(1+\frac{2}{21}\right)
Multiply \frac{1}{2} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\frac{3}{5}+\frac{1}{3}}{\frac{1}{5}+\frac{4}{2}}}{\left(1-\frac{5}{6}\right)\left(1+\frac{5}{6}\right)+\frac{1}{36}}\left(1+\frac{2}{21}\right)
Cancel out 2 in both numerator and denominator.
\frac{\frac{\frac{9}{15}+\frac{5}{15}}{\frac{1}{5}+\frac{4}{2}}}{\left(1-\frac{5}{6}\right)\left(1+\frac{5}{6}\right)+\frac{1}{36}}\left(1+\frac{2}{21}\right)
Least common multiple of 5 and 3 is 15. Convert \frac{3}{5} and \frac{1}{3} to fractions with denominator 15.
\frac{\frac{\frac{9+5}{15}}{\frac{1}{5}+\frac{4}{2}}}{\left(1-\frac{5}{6}\right)\left(1+\frac{5}{6}\right)+\frac{1}{36}}\left(1+\frac{2}{21}\right)
Since \frac{9}{15} and \frac{5}{15} have the same denominator, add them by adding their numerators.
\frac{\frac{\frac{14}{15}}{\frac{1}{5}+\frac{4}{2}}}{\left(1-\frac{5}{6}\right)\left(1+\frac{5}{6}\right)+\frac{1}{36}}\left(1+\frac{2}{21}\right)
Add 9 and 5 to get 14.
\frac{\frac{\frac{14}{15}}{\frac{1}{5}+2}}{\left(1-\frac{5}{6}\right)\left(1+\frac{5}{6}\right)+\frac{1}{36}}\left(1+\frac{2}{21}\right)
Divide 4 by 2 to get 2.
\frac{\frac{\frac{14}{15}}{\frac{1}{5}+\frac{10}{5}}}{\left(1-\frac{5}{6}\right)\left(1+\frac{5}{6}\right)+\frac{1}{36}}\left(1+\frac{2}{21}\right)
Convert 2 to fraction \frac{10}{5}.
\frac{\frac{\frac{14}{15}}{\frac{1+10}{5}}}{\left(1-\frac{5}{6}\right)\left(1+\frac{5}{6}\right)+\frac{1}{36}}\left(1+\frac{2}{21}\right)
Since \frac{1}{5} and \frac{10}{5} have the same denominator, add them by adding their numerators.
\frac{\frac{\frac{14}{15}}{\frac{11}{5}}}{\left(1-\frac{5}{6}\right)\left(1+\frac{5}{6}\right)+\frac{1}{36}}\left(1+\frac{2}{21}\right)
Add 1 and 10 to get 11.
\frac{\frac{14}{15}\times \frac{5}{11}}{\left(1-\frac{5}{6}\right)\left(1+\frac{5}{6}\right)+\frac{1}{36}}\left(1+\frac{2}{21}\right)
Divide \frac{14}{15} by \frac{11}{5} by multiplying \frac{14}{15} by the reciprocal of \frac{11}{5}.
\frac{\frac{14\times 5}{15\times 11}}{\left(1-\frac{5}{6}\right)\left(1+\frac{5}{6}\right)+\frac{1}{36}}\left(1+\frac{2}{21}\right)
Multiply \frac{14}{15} times \frac{5}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{70}{165}}{\left(1-\frac{5}{6}\right)\left(1+\frac{5}{6}\right)+\frac{1}{36}}\left(1+\frac{2}{21}\right)
Do the multiplications in the fraction \frac{14\times 5}{15\times 11}.
\frac{\frac{14}{33}}{\left(1-\frac{5}{6}\right)\left(1+\frac{5}{6}\right)+\frac{1}{36}}\left(1+\frac{2}{21}\right)
Reduce the fraction \frac{70}{165} to lowest terms by extracting and canceling out 5.
\frac{\frac{14}{33}}{\left(\frac{6}{6}-\frac{5}{6}\right)\left(1+\frac{5}{6}\right)+\frac{1}{36}}\left(1+\frac{2}{21}\right)
Convert 1 to fraction \frac{6}{6}.
\frac{\frac{14}{33}}{\frac{6-5}{6}\left(1+\frac{5}{6}\right)+\frac{1}{36}}\left(1+\frac{2}{21}\right)
Since \frac{6}{6} and \frac{5}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{14}{33}}{\frac{1}{6}\left(1+\frac{5}{6}\right)+\frac{1}{36}}\left(1+\frac{2}{21}\right)
Subtract 5 from 6 to get 1.
\frac{\frac{14}{33}}{\frac{1}{6}\left(\frac{6}{6}+\frac{5}{6}\right)+\frac{1}{36}}\left(1+\frac{2}{21}\right)
Convert 1 to fraction \frac{6}{6}.
\frac{\frac{14}{33}}{\frac{1}{6}\times \frac{6+5}{6}+\frac{1}{36}}\left(1+\frac{2}{21}\right)
Since \frac{6}{6} and \frac{5}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{14}{33}}{\frac{1}{6}\times \frac{11}{6}+\frac{1}{36}}\left(1+\frac{2}{21}\right)
Add 6 and 5 to get 11.
\frac{\frac{14}{33}}{\frac{1\times 11}{6\times 6}+\frac{1}{36}}\left(1+\frac{2}{21}\right)
Multiply \frac{1}{6} times \frac{11}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{14}{33}}{\frac{11}{36}+\frac{1}{36}}\left(1+\frac{2}{21}\right)
Do the multiplications in the fraction \frac{1\times 11}{6\times 6}.
\frac{\frac{14}{33}}{\frac{11+1}{36}}\left(1+\frac{2}{21}\right)
Since \frac{11}{36} and \frac{1}{36} have the same denominator, add them by adding their numerators.
\frac{\frac{14}{33}}{\frac{12}{36}}\left(1+\frac{2}{21}\right)
Add 11 and 1 to get 12.
\frac{\frac{14}{33}}{\frac{1}{3}}\left(1+\frac{2}{21}\right)
Reduce the fraction \frac{12}{36} to lowest terms by extracting and canceling out 12.
\frac{14}{33}\times 3\left(1+\frac{2}{21}\right)
Divide \frac{14}{33} by \frac{1}{3} by multiplying \frac{14}{33} by the reciprocal of \frac{1}{3}.
\frac{14\times 3}{33}\left(1+\frac{2}{21}\right)
Express \frac{14}{33}\times 3 as a single fraction.
\frac{42}{33}\left(1+\frac{2}{21}\right)
Multiply 14 and 3 to get 42.
\frac{14}{11}\left(1+\frac{2}{21}\right)
Reduce the fraction \frac{42}{33} to lowest terms by extracting and canceling out 3.
\frac{14}{11}\left(\frac{21}{21}+\frac{2}{21}\right)
Convert 1 to fraction \frac{21}{21}.
\frac{14}{11}\times \frac{21+2}{21}
Since \frac{21}{21} and \frac{2}{21} have the same denominator, add them by adding their numerators.
\frac{14}{11}\times \frac{23}{21}
Add 21 and 2 to get 23.
\frac{14\times 23}{11\times 21}
Multiply \frac{14}{11} times \frac{23}{21} by multiplying numerator times numerator and denominator times denominator.
\frac{322}{231}
Do the multiplications in the fraction \frac{14\times 23}{11\times 21}.
\frac{46}{33}
Reduce the fraction \frac{322}{231} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}