Evaluate
\frac{295}{11}\approx 26.818181818
Factor
\frac{5 \cdot 59}{11} = 26\frac{9}{11} = 26.818181818181817
Share
Copied to clipboard
\frac{\left(\frac{9}{12}-\frac{4}{12}\right)\times \frac{2}{3}}{\frac{1-\frac{1}{6}}{5}}\times 3+\frac{\frac{2}{\frac{4}{3}+\frac{1}{2}}}{\frac{\frac{1}{2}-\frac{2}{5}}{2}}
Least common multiple of 4 and 3 is 12. Convert \frac{3}{4} and \frac{1}{3} to fractions with denominator 12.
\frac{\frac{9-4}{12}\times \frac{2}{3}}{\frac{1-\frac{1}{6}}{5}}\times 3+\frac{\frac{2}{\frac{4}{3}+\frac{1}{2}}}{\frac{\frac{1}{2}-\frac{2}{5}}{2}}
Since \frac{9}{12} and \frac{4}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5}{12}\times \frac{2}{3}}{\frac{1-\frac{1}{6}}{5}}\times 3+\frac{\frac{2}{\frac{4}{3}+\frac{1}{2}}}{\frac{\frac{1}{2}-\frac{2}{5}}{2}}
Subtract 4 from 9 to get 5.
\frac{\frac{5\times 2}{12\times 3}}{\frac{1-\frac{1}{6}}{5}}\times 3+\frac{\frac{2}{\frac{4}{3}+\frac{1}{2}}}{\frac{\frac{1}{2}-\frac{2}{5}}{2}}
Multiply \frac{5}{12} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{10}{36}}{\frac{1-\frac{1}{6}}{5}}\times 3+\frac{\frac{2}{\frac{4}{3}+\frac{1}{2}}}{\frac{\frac{1}{2}-\frac{2}{5}}{2}}
Do the multiplications in the fraction \frac{5\times 2}{12\times 3}.
\frac{\frac{5}{18}}{\frac{1-\frac{1}{6}}{5}}\times 3+\frac{\frac{2}{\frac{4}{3}+\frac{1}{2}}}{\frac{\frac{1}{2}-\frac{2}{5}}{2}}
Reduce the fraction \frac{10}{36} to lowest terms by extracting and canceling out 2.
\frac{\frac{5}{18}}{\frac{\frac{6}{6}-\frac{1}{6}}{5}}\times 3+\frac{\frac{2}{\frac{4}{3}+\frac{1}{2}}}{\frac{\frac{1}{2}-\frac{2}{5}}{2}}
Convert 1 to fraction \frac{6}{6}.
\frac{\frac{5}{18}}{\frac{\frac{6-1}{6}}{5}}\times 3+\frac{\frac{2}{\frac{4}{3}+\frac{1}{2}}}{\frac{\frac{1}{2}-\frac{2}{5}}{2}}
Since \frac{6}{6} and \frac{1}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5}{18}}{\frac{\frac{5}{6}}{5}}\times 3+\frac{\frac{2}{\frac{4}{3}+\frac{1}{2}}}{\frac{\frac{1}{2}-\frac{2}{5}}{2}}
Subtract 1 from 6 to get 5.
\frac{\frac{5}{18}}{\frac{5}{6\times 5}}\times 3+\frac{\frac{2}{\frac{4}{3}+\frac{1}{2}}}{\frac{\frac{1}{2}-\frac{2}{5}}{2}}
Express \frac{\frac{5}{6}}{5} as a single fraction.
\frac{\frac{5}{18}}{\frac{1}{6}}\times 3+\frac{\frac{2}{\frac{4}{3}+\frac{1}{2}}}{\frac{\frac{1}{2}-\frac{2}{5}}{2}}
Cancel out 5 in both numerator and denominator.
\frac{5}{18}\times 6\times 3+\frac{\frac{2}{\frac{4}{3}+\frac{1}{2}}}{\frac{\frac{1}{2}-\frac{2}{5}}{2}}
Divide \frac{5}{18} by \frac{1}{6} by multiplying \frac{5}{18} by the reciprocal of \frac{1}{6}.
\frac{5\times 6}{18}\times 3+\frac{\frac{2}{\frac{4}{3}+\frac{1}{2}}}{\frac{\frac{1}{2}-\frac{2}{5}}{2}}
Express \frac{5}{18}\times 6 as a single fraction.
\frac{30}{18}\times 3+\frac{\frac{2}{\frac{4}{3}+\frac{1}{2}}}{\frac{\frac{1}{2}-\frac{2}{5}}{2}}
Multiply 5 and 6 to get 30.
\frac{5}{3}\times 3+\frac{\frac{2}{\frac{4}{3}+\frac{1}{2}}}{\frac{\frac{1}{2}-\frac{2}{5}}{2}}
Reduce the fraction \frac{30}{18} to lowest terms by extracting and canceling out 6.
5+\frac{\frac{2}{\frac{4}{3}+\frac{1}{2}}}{\frac{\frac{1}{2}-\frac{2}{5}}{2}}
Cancel out 3 and 3.
5+\frac{2\times 2}{\left(\frac{4}{3}+\frac{1}{2}\right)\left(\frac{1}{2}-\frac{2}{5}\right)}
Divide \frac{2}{\frac{4}{3}+\frac{1}{2}} by \frac{\frac{1}{2}-\frac{2}{5}}{2} by multiplying \frac{2}{\frac{4}{3}+\frac{1}{2}} by the reciprocal of \frac{\frac{1}{2}-\frac{2}{5}}{2}.
5+\frac{4}{\left(\frac{4}{3}+\frac{1}{2}\right)\left(\frac{1}{2}-\frac{2}{5}\right)}
Multiply 2 and 2 to get 4.
5+\frac{4}{\left(\frac{8}{6}+\frac{3}{6}\right)\left(\frac{1}{2}-\frac{2}{5}\right)}
Least common multiple of 3 and 2 is 6. Convert \frac{4}{3} and \frac{1}{2} to fractions with denominator 6.
5+\frac{4}{\frac{8+3}{6}\left(\frac{1}{2}-\frac{2}{5}\right)}
Since \frac{8}{6} and \frac{3}{6} have the same denominator, add them by adding their numerators.
5+\frac{4}{\frac{11}{6}\left(\frac{1}{2}-\frac{2}{5}\right)}
Add 8 and 3 to get 11.
5+\frac{4}{\frac{11}{6}\left(\frac{5}{10}-\frac{4}{10}\right)}
Least common multiple of 2 and 5 is 10. Convert \frac{1}{2} and \frac{2}{5} to fractions with denominator 10.
5+\frac{4}{\frac{11}{6}\times \frac{5-4}{10}}
Since \frac{5}{10} and \frac{4}{10} have the same denominator, subtract them by subtracting their numerators.
5+\frac{4}{\frac{11}{6}\times \frac{1}{10}}
Subtract 4 from 5 to get 1.
5+\frac{4}{\frac{11\times 1}{6\times 10}}
Multiply \frac{11}{6} times \frac{1}{10} by multiplying numerator times numerator and denominator times denominator.
5+\frac{4}{\frac{11}{60}}
Do the multiplications in the fraction \frac{11\times 1}{6\times 10}.
5+4\times \frac{60}{11}
Divide 4 by \frac{11}{60} by multiplying 4 by the reciprocal of \frac{11}{60}.
5+\frac{4\times 60}{11}
Express 4\times \frac{60}{11} as a single fraction.
5+\frac{240}{11}
Multiply 4 and 60 to get 240.
\frac{55}{11}+\frac{240}{11}
Convert 5 to fraction \frac{55}{11}.
\frac{55+240}{11}
Since \frac{55}{11} and \frac{240}{11} have the same denominator, add them by adding their numerators.
\frac{295}{11}
Add 55 and 240 to get 295.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}