Evaluate
\frac{565}{3}\approx 188.333333333
Factor
\frac{5 \cdot 113}{3} = 188\frac{1}{3} = 188.33333333333334
Share
Copied to clipboard
\frac{\left(\frac{9}{12}-\frac{4}{12}\right)\times \frac{2}{3}}{\frac{1-\frac{1}{6}}{5}}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Least common multiple of 4 and 3 is 12. Convert \frac{3}{4} and \frac{1}{3} to fractions with denominator 12.
\frac{\frac{9-4}{12}\times \frac{2}{3}}{\frac{1-\frac{1}{6}}{5}}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Since \frac{9}{12} and \frac{4}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5}{12}\times \frac{2}{3}}{\frac{1-\frac{1}{6}}{5}}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Subtract 4 from 9 to get 5.
\frac{\frac{5\times 2}{12\times 3}}{\frac{1-\frac{1}{6}}{5}}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Multiply \frac{5}{12} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{10}{36}}{\frac{1-\frac{1}{6}}{5}}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Do the multiplications in the fraction \frac{5\times 2}{12\times 3}.
\frac{\frac{5}{18}}{\frac{1-\frac{1}{6}}{5}}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Reduce the fraction \frac{10}{36} to lowest terms by extracting and canceling out 2.
\frac{\frac{5}{18}}{\frac{\frac{6}{6}-\frac{1}{6}}{5}}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Convert 1 to fraction \frac{6}{6}.
\frac{\frac{5}{18}}{\frac{\frac{6-1}{6}}{5}}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Since \frac{6}{6} and \frac{1}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5}{18}}{\frac{\frac{5}{6}}{5}}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Subtract 1 from 6 to get 5.
\frac{\frac{5}{18}}{\frac{5}{6\times 5}}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Express \frac{\frac{5}{6}}{5} as a single fraction.
\frac{\frac{5}{18}}{\frac{1}{6}}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Cancel out 5 in both numerator and denominator.
\frac{5}{18}\times 6\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Divide \frac{5}{18} by \frac{1}{6} by multiplying \frac{5}{18} by the reciprocal of \frac{1}{6}.
\frac{5\times 6}{18}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Express \frac{5}{18}\times 6 as a single fraction.
\frac{30}{18}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Multiply 5 and 6 to get 30.
\frac{5}{3}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Reduce the fraction \frac{30}{18} to lowest terms by extracting and canceling out 6.
5+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Cancel out 3 and 3.
5+\frac{\frac{\frac{8}{6}+\frac{3}{6}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Least common multiple of 3 and 2 is 6. Convert \frac{4}{3} and \frac{1}{2} to fractions with denominator 6.
5+\frac{\frac{\frac{8+3}{6}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Since \frac{8}{6} and \frac{3}{6} have the same denominator, add them by adding their numerators.
5+\frac{\frac{\frac{11}{6}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Add 8 and 3 to get 11.
5+\frac{\frac{\frac{11}{6}}{\frac{5}{10}-\frac{4}{10}}}{\frac{1}{2}-\frac{2}{5}}
Least common multiple of 2 and 5 is 10. Convert \frac{1}{2} and \frac{2}{5} to fractions with denominator 10.
5+\frac{\frac{\frac{11}{6}}{\frac{5-4}{10}}}{\frac{1}{2}-\frac{2}{5}}
Since \frac{5}{10} and \frac{4}{10} have the same denominator, subtract them by subtracting their numerators.
5+\frac{\frac{\frac{11}{6}}{\frac{1}{10}}}{\frac{1}{2}-\frac{2}{5}}
Subtract 4 from 5 to get 1.
5+\frac{\frac{11}{6}\times 10}{\frac{1}{2}-\frac{2}{5}}
Divide \frac{11}{6} by \frac{1}{10} by multiplying \frac{11}{6} by the reciprocal of \frac{1}{10}.
5+\frac{\frac{11\times 10}{6}}{\frac{1}{2}-\frac{2}{5}}
Express \frac{11}{6}\times 10 as a single fraction.
5+\frac{\frac{110}{6}}{\frac{1}{2}-\frac{2}{5}}
Multiply 11 and 10 to get 110.
5+\frac{\frac{55}{3}}{\frac{1}{2}-\frac{2}{5}}
Reduce the fraction \frac{110}{6} to lowest terms by extracting and canceling out 2.
5+\frac{\frac{55}{3}}{\frac{5}{10}-\frac{4}{10}}
Least common multiple of 2 and 5 is 10. Convert \frac{1}{2} and \frac{2}{5} to fractions with denominator 10.
5+\frac{\frac{55}{3}}{\frac{5-4}{10}}
Since \frac{5}{10} and \frac{4}{10} have the same denominator, subtract them by subtracting their numerators.
5+\frac{\frac{55}{3}}{\frac{1}{10}}
Subtract 4 from 5 to get 1.
5+\frac{55}{3}\times 10
Divide \frac{55}{3} by \frac{1}{10} by multiplying \frac{55}{3} by the reciprocal of \frac{1}{10}.
5+\frac{55\times 10}{3}
Express \frac{55}{3}\times 10 as a single fraction.
5+\frac{550}{3}
Multiply 55 and 10 to get 550.
\frac{15}{3}+\frac{550}{3}
Convert 5 to fraction \frac{15}{3}.
\frac{15+550}{3}
Since \frac{15}{3} and \frac{550}{3} have the same denominator, add them by adding their numerators.
\frac{565}{3}
Add 15 and 550 to get 565.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}