Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{3}{2}t-\frac{9}{2}\right)^{2}+\left(t-3\right)^{2}=\frac{9}{4}\times 13
Multiply both sides by 13.
\frac{9}{4}t^{2}-\frac{27}{2}t+\frac{81}{4}+\left(t-3\right)^{2}=\frac{9}{4}\times 13
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{3}{2}t-\frac{9}{2}\right)^{2}.
\frac{9}{4}t^{2}-\frac{27}{2}t+\frac{81}{4}+t^{2}-6t+9=\frac{9}{4}\times 13
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-3\right)^{2}.
\frac{13}{4}t^{2}-\frac{27}{2}t+\frac{81}{4}-6t+9=\frac{9}{4}\times 13
Combine \frac{9}{4}t^{2} and t^{2} to get \frac{13}{4}t^{2}.
\frac{13}{4}t^{2}-\frac{39}{2}t+\frac{81}{4}+9=\frac{9}{4}\times 13
Combine -\frac{27}{2}t and -6t to get -\frac{39}{2}t.
\frac{13}{4}t^{2}-\frac{39}{2}t+\frac{117}{4}=\frac{9}{4}\times 13
Add \frac{81}{4} and 9 to get \frac{117}{4}.
\frac{13}{4}t^{2}-\frac{39}{2}t+\frac{117}{4}=\frac{117}{4}
Multiply \frac{9}{4} and 13 to get \frac{117}{4}.
\frac{13}{4}t^{2}-\frac{39}{2}t+\frac{117}{4}-\frac{117}{4}=0
Subtract \frac{117}{4} from both sides.
\frac{13}{4}t^{2}-\frac{39}{2}t=0
Subtract \frac{117}{4} from \frac{117}{4} to get 0.
t\left(\frac{13}{4}t-\frac{39}{2}\right)=0
Factor out t.
t=0 t=6
To find equation solutions, solve t=0 and \frac{13t}{4}-\frac{39}{2}=0.
\left(\frac{3}{2}t-\frac{9}{2}\right)^{2}+\left(t-3\right)^{2}=\frac{9}{4}\times 13
Multiply both sides by 13.
\frac{9}{4}t^{2}-\frac{27}{2}t+\frac{81}{4}+\left(t-3\right)^{2}=\frac{9}{4}\times 13
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{3}{2}t-\frac{9}{2}\right)^{2}.
\frac{9}{4}t^{2}-\frac{27}{2}t+\frac{81}{4}+t^{2}-6t+9=\frac{9}{4}\times 13
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-3\right)^{2}.
\frac{13}{4}t^{2}-\frac{27}{2}t+\frac{81}{4}-6t+9=\frac{9}{4}\times 13
Combine \frac{9}{4}t^{2} and t^{2} to get \frac{13}{4}t^{2}.
\frac{13}{4}t^{2}-\frac{39}{2}t+\frac{81}{4}+9=\frac{9}{4}\times 13
Combine -\frac{27}{2}t and -6t to get -\frac{39}{2}t.
\frac{13}{4}t^{2}-\frac{39}{2}t+\frac{117}{4}=\frac{9}{4}\times 13
Add \frac{81}{4} and 9 to get \frac{117}{4}.
\frac{13}{4}t^{2}-\frac{39}{2}t+\frac{117}{4}=\frac{117}{4}
Multiply \frac{9}{4} and 13 to get \frac{117}{4}.
\frac{13}{4}t^{2}-\frac{39}{2}t+\frac{117}{4}-\frac{117}{4}=0
Subtract \frac{117}{4} from both sides.
\frac{13}{4}t^{2}-\frac{39}{2}t=0
Subtract \frac{117}{4} from \frac{117}{4} to get 0.
t=\frac{-\left(-\frac{39}{2}\right)±\sqrt{\left(-\frac{39}{2}\right)^{2}}}{2\times \frac{13}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{13}{4} for a, -\frac{39}{2} for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-\frac{39}{2}\right)±\frac{39}{2}}{2\times \frac{13}{4}}
Take the square root of \left(-\frac{39}{2}\right)^{2}.
t=\frac{\frac{39}{2}±\frac{39}{2}}{2\times \frac{13}{4}}
The opposite of -\frac{39}{2} is \frac{39}{2}.
t=\frac{\frac{39}{2}±\frac{39}{2}}{\frac{13}{2}}
Multiply 2 times \frac{13}{4}.
t=\frac{39}{\frac{13}{2}}
Now solve the equation t=\frac{\frac{39}{2}±\frac{39}{2}}{\frac{13}{2}} when ± is plus. Add \frac{39}{2} to \frac{39}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
t=6
Divide 39 by \frac{13}{2} by multiplying 39 by the reciprocal of \frac{13}{2}.
t=\frac{0}{\frac{13}{2}}
Now solve the equation t=\frac{\frac{39}{2}±\frac{39}{2}}{\frac{13}{2}} when ± is minus. Subtract \frac{39}{2} from \frac{39}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
t=0
Divide 0 by \frac{13}{2} by multiplying 0 by the reciprocal of \frac{13}{2}.
t=6 t=0
The equation is now solved.
\left(\frac{3}{2}t-\frac{9}{2}\right)^{2}+\left(t-3\right)^{2}=\frac{9}{4}\times 13
Multiply both sides by 13.
\frac{9}{4}t^{2}-\frac{27}{2}t+\frac{81}{4}+\left(t-3\right)^{2}=\frac{9}{4}\times 13
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{3}{2}t-\frac{9}{2}\right)^{2}.
\frac{9}{4}t^{2}-\frac{27}{2}t+\frac{81}{4}+t^{2}-6t+9=\frac{9}{4}\times 13
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-3\right)^{2}.
\frac{13}{4}t^{2}-\frac{27}{2}t+\frac{81}{4}-6t+9=\frac{9}{4}\times 13
Combine \frac{9}{4}t^{2} and t^{2} to get \frac{13}{4}t^{2}.
\frac{13}{4}t^{2}-\frac{39}{2}t+\frac{81}{4}+9=\frac{9}{4}\times 13
Combine -\frac{27}{2}t and -6t to get -\frac{39}{2}t.
\frac{13}{4}t^{2}-\frac{39}{2}t+\frac{117}{4}=\frac{9}{4}\times 13
Add \frac{81}{4} and 9 to get \frac{117}{4}.
\frac{13}{4}t^{2}-\frac{39}{2}t+\frac{117}{4}=\frac{117}{4}
Multiply \frac{9}{4} and 13 to get \frac{117}{4}.
\frac{13}{4}t^{2}-\frac{39}{2}t=\frac{117}{4}-\frac{117}{4}
Subtract \frac{117}{4} from both sides.
\frac{13}{4}t^{2}-\frac{39}{2}t=0
Subtract \frac{117}{4} from \frac{117}{4} to get 0.
\frac{\frac{13}{4}t^{2}-\frac{39}{2}t}{\frac{13}{4}}=\frac{0}{\frac{13}{4}}
Divide both sides of the equation by \frac{13}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\left(-\frac{\frac{39}{2}}{\frac{13}{4}}\right)t=\frac{0}{\frac{13}{4}}
Dividing by \frac{13}{4} undoes the multiplication by \frac{13}{4}.
t^{2}-6t=\frac{0}{\frac{13}{4}}
Divide -\frac{39}{2} by \frac{13}{4} by multiplying -\frac{39}{2} by the reciprocal of \frac{13}{4}.
t^{2}-6t=0
Divide 0 by \frac{13}{4} by multiplying 0 by the reciprocal of \frac{13}{4}.
t^{2}-6t+\left(-3\right)^{2}=\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-6t+9=9
Square -3.
\left(t-3\right)^{2}=9
Factor t^{2}-6t+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-3\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
t-3=3 t-3=-3
Simplify.
t=6 t=0
Add 3 to both sides of the equation.