Evaluate
\frac{125}{27}\approx 4.62962963
Factor
\frac{5 ^ {3}}{3 ^ {3}} = 4\frac{17}{27} = 4.62962962962963
Share
Copied to clipboard
\frac{5\times \left(\frac{245}{44}\right)^{2}}{3\times \left(\frac{147}{44}\right)^{2}}
Cancel out 7 in both numerator and denominator.
\frac{5\times \frac{60025}{1936}}{3\times \left(\frac{147}{44}\right)^{2}}
Calculate \frac{245}{44} to the power of 2 and get \frac{60025}{1936}.
\frac{\frac{5\times 60025}{1936}}{3\times \left(\frac{147}{44}\right)^{2}}
Express 5\times \frac{60025}{1936} as a single fraction.
\frac{\frac{300125}{1936}}{3\times \left(\frac{147}{44}\right)^{2}}
Multiply 5 and 60025 to get 300125.
\frac{\frac{300125}{1936}}{3\times \frac{21609}{1936}}
Calculate \frac{147}{44} to the power of 2 and get \frac{21609}{1936}.
\frac{\frac{300125}{1936}}{\frac{3\times 21609}{1936}}
Express 3\times \frac{21609}{1936} as a single fraction.
\frac{\frac{300125}{1936}}{\frac{64827}{1936}}
Multiply 3 and 21609 to get 64827.
\frac{300125}{1936}\times \frac{1936}{64827}
Divide \frac{300125}{1936} by \frac{64827}{1936} by multiplying \frac{300125}{1936} by the reciprocal of \frac{64827}{1936}.
\frac{300125\times 1936}{1936\times 64827}
Multiply \frac{300125}{1936} times \frac{1936}{64827} by multiplying numerator times numerator and denominator times denominator.
\frac{300125}{64827}
Cancel out 1936 in both numerator and denominator.
\frac{125}{27}
Reduce the fraction \frac{300125}{64827} to lowest terms by extracting and canceling out 2401.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}