Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{2}{3}\right)^{5}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{81}{6}\right)^{-2}}{\left(\frac{3}{2}\right)^{-5}\times \left(\frac{2}{3}\right)^{1}}\times \left(\left(\frac{2}{3}\right)^{5}\right)^{2}\times \left(\frac{8}{27}\right)^{3}
To multiply powers of the same base, add their exponents. Add 5 and 0 to get 5.
\frac{\left(\frac{2}{3}\right)^{8}\times \left(\frac{81}{6}\right)^{-2}}{\left(\frac{3}{2}\right)^{-5}\times \left(\frac{2}{3}\right)^{1}}\times \left(\left(\frac{2}{3}\right)^{5}\right)^{2}\times \left(\frac{8}{27}\right)^{3}
To multiply powers of the same base, add their exponents. Add 5 and 3 to get 8.
\frac{\left(\frac{2}{3}\right)^{8}\times \left(\frac{81}{6}\right)^{-2}}{\left(\frac{3}{2}\right)^{-5}\times \left(\frac{2}{3}\right)^{1}}\times \left(\frac{2}{3}\right)^{10}\times \left(\frac{8}{27}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
\frac{\frac{256}{6561}\times \left(\frac{81}{6}\right)^{-2}}{\left(\frac{3}{2}\right)^{-5}\times \left(\frac{2}{3}\right)^{1}}\times \left(\frac{2}{3}\right)^{10}\times \left(\frac{8}{27}\right)^{3}
Calculate \frac{2}{3} to the power of 8 and get \frac{256}{6561}.
\frac{\frac{256}{6561}\times \left(\frac{27}{2}\right)^{-2}}{\left(\frac{3}{2}\right)^{-5}\times \left(\frac{2}{3}\right)^{1}}\times \left(\frac{2}{3}\right)^{10}\times \left(\frac{8}{27}\right)^{3}
Reduce the fraction \frac{81}{6} to lowest terms by extracting and canceling out 3.
\frac{\frac{256}{6561}\times \frac{4}{729}}{\left(\frac{3}{2}\right)^{-5}\times \left(\frac{2}{3}\right)^{1}}\times \left(\frac{2}{3}\right)^{10}\times \left(\frac{8}{27}\right)^{3}
Calculate \frac{27}{2} to the power of -2 and get \frac{4}{729}.
\frac{\frac{1024}{4782969}}{\left(\frac{3}{2}\right)^{-5}\times \left(\frac{2}{3}\right)^{1}}\times \left(\frac{2}{3}\right)^{10}\times \left(\frac{8}{27}\right)^{3}
Multiply \frac{256}{6561} and \frac{4}{729} to get \frac{1024}{4782969}.
\frac{\frac{1024}{4782969}}{\frac{32}{243}\times \left(\frac{2}{3}\right)^{1}}\times \left(\frac{2}{3}\right)^{10}\times \left(\frac{8}{27}\right)^{3}
Calculate \frac{3}{2} to the power of -5 and get \frac{32}{243}.
\frac{\frac{1024}{4782969}}{\frac{32}{243}\times \frac{2}{3}}\times \left(\frac{2}{3}\right)^{10}\times \left(\frac{8}{27}\right)^{3}
Calculate \frac{2}{3} to the power of 1 and get \frac{2}{3}.
\frac{\frac{1024}{4782969}}{\frac{64}{729}}\times \left(\frac{2}{3}\right)^{10}\times \left(\frac{8}{27}\right)^{3}
Multiply \frac{32}{243} and \frac{2}{3} to get \frac{64}{729}.
\frac{1024}{4782969}\times \frac{729}{64}\times \left(\frac{2}{3}\right)^{10}\times \left(\frac{8}{27}\right)^{3}
Divide \frac{1024}{4782969} by \frac{64}{729} by multiplying \frac{1024}{4782969} by the reciprocal of \frac{64}{729}.
\frac{16}{6561}\times \left(\frac{2}{3}\right)^{10}\times \left(\frac{8}{27}\right)^{3}
Multiply \frac{1024}{4782969} and \frac{729}{64} to get \frac{16}{6561}.
\frac{16}{6561}\times \frac{1024}{59049}\times \left(\frac{8}{27}\right)^{3}
Calculate \frac{2}{3} to the power of 10 and get \frac{1024}{59049}.
\frac{16384}{387420489}\times \left(\frac{8}{27}\right)^{3}
Multiply \frac{16}{6561} and \frac{1024}{59049} to get \frac{16384}{387420489}.
\frac{16384}{387420489}\times \frac{512}{19683}
Calculate \frac{8}{27} to the power of 3 and get \frac{512}{19683}.
\frac{8388608}{7625597484987}
Multiply \frac{16384}{387420489} and \frac{512}{19683} to get \frac{8388608}{7625597484987}.