Evaluate
-\frac{\sqrt{3}}{2}+\frac{319}{481}\approx -0.202823741
Factor
\frac{638 - 481 \sqrt{3}}{962} = -0.20282374058277544
Share
Copied to clipboard
\frac{\frac{169}{9}+\left(\frac{37}{3}\right)^{2}-10^{2}}{2\times \frac{13}{3}\times \frac{37}{3}}-\frac{\sqrt{3}}{2}
Calculate \frac{13}{3} to the power of 2 and get \frac{169}{9}.
\frac{\frac{169}{9}+\frac{1369}{9}-10^{2}}{2\times \frac{13}{3}\times \frac{37}{3}}-\frac{\sqrt{3}}{2}
Calculate \frac{37}{3} to the power of 2 and get \frac{1369}{9}.
\frac{\frac{169+1369}{9}-10^{2}}{2\times \frac{13}{3}\times \frac{37}{3}}-\frac{\sqrt{3}}{2}
Since \frac{169}{9} and \frac{1369}{9} have the same denominator, add them by adding their numerators.
\frac{\frac{1538}{9}-10^{2}}{2\times \frac{13}{3}\times \frac{37}{3}}-\frac{\sqrt{3}}{2}
Add 169 and 1369 to get 1538.
\frac{\frac{1538}{9}-100}{2\times \frac{13}{3}\times \frac{37}{3}}-\frac{\sqrt{3}}{2}
Calculate 10 to the power of 2 and get 100.
\frac{\frac{1538}{9}-\frac{900}{9}}{2\times \frac{13}{3}\times \frac{37}{3}}-\frac{\sqrt{3}}{2}
Convert 100 to fraction \frac{900}{9}.
\frac{\frac{1538-900}{9}}{2\times \frac{13}{3}\times \frac{37}{3}}-\frac{\sqrt{3}}{2}
Since \frac{1538}{9} and \frac{900}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{638}{9}}{2\times \frac{13}{3}\times \frac{37}{3}}-\frac{\sqrt{3}}{2}
Subtract 900 from 1538 to get 638.
\frac{\frac{638}{9}}{\frac{2\times 13}{3}\times \frac{37}{3}}-\frac{\sqrt{3}}{2}
Express 2\times \frac{13}{3} as a single fraction.
\frac{\frac{638}{9}}{\frac{26}{3}\times \frac{37}{3}}-\frac{\sqrt{3}}{2}
Multiply 2 and 13 to get 26.
\frac{\frac{638}{9}}{\frac{26\times 37}{3\times 3}}-\frac{\sqrt{3}}{2}
Multiply \frac{26}{3} times \frac{37}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{638}{9}}{\frac{962}{9}}-\frac{\sqrt{3}}{2}
Do the multiplications in the fraction \frac{26\times 37}{3\times 3}.
\frac{638}{9}\times \frac{9}{962}-\frac{\sqrt{3}}{2}
Divide \frac{638}{9} by \frac{962}{9} by multiplying \frac{638}{9} by the reciprocal of \frac{962}{9}.
\frac{638\times 9}{9\times 962}-\frac{\sqrt{3}}{2}
Multiply \frac{638}{9} times \frac{9}{962} by multiplying numerator times numerator and denominator times denominator.
\frac{638}{962}-\frac{\sqrt{3}}{2}
Cancel out 9 in both numerator and denominator.
\frac{319}{481}-\frac{\sqrt{3}}{2}
Reduce the fraction \frac{638}{962} to lowest terms by extracting and canceling out 2.
\frac{319\times 2}{962}-\frac{481\sqrt{3}}{962}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 481 and 2 is 962. Multiply \frac{319}{481} times \frac{2}{2}. Multiply \frac{\sqrt{3}}{2} times \frac{481}{481}.
\frac{319\times 2-481\sqrt{3}}{962}
Since \frac{319\times 2}{962} and \frac{481\sqrt{3}}{962} have the same denominator, subtract them by subtracting their numerators.
\frac{638-481\sqrt{3}}{962}
Do the multiplications in 319\times 2-481\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}