Evaluate
\frac{5x_{3}}{17}
Differentiate w.r.t. x_3
\frac{5}{17} = 0.29411764705882354
Share
Copied to clipboard
\frac{\frac{9}{17}x_{3}\times 100}{180}
Divide 1.8x_{3} by 3.4 to get \frac{9}{17}x_{3}.
\frac{\frac{900}{17}x_{3}}{180}
Multiply \frac{9}{17} and 100 to get \frac{900}{17}.
\frac{5}{17}x_{3}
Divide \frac{900}{17}x_{3} by 180 to get \frac{5}{17}x_{3}.
\frac{\mathrm{d}}{\mathrm{d}x_{3}}(\frac{\frac{9}{17}x_{3}\times 100}{180})
Divide 1.8x_{3} by 3.4 to get \frac{9}{17}x_{3}.
\frac{\mathrm{d}}{\mathrm{d}x_{3}}(\frac{\frac{900}{17}x_{3}}{180})
Multiply \frac{9}{17} and 100 to get \frac{900}{17}.
\frac{\mathrm{d}}{\mathrm{d}x_{3}}(\frac{5}{17}x_{3})
Divide \frac{900}{17}x_{3} by 180 to get \frac{5}{17}x_{3}.
\frac{5}{17}x_{3}^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{5}{17}x_{3}^{0}
Subtract 1 from 1.
\frac{5}{17}\times 1
For any term t except 0, t^{0}=1.
\frac{5}{17}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}